1 / 26

Dipolo Infinitesimal

Dipolo Infinitesimal. Sandra Cruz-Pol, Ph. D. INEL 5305 ECE UPRM Mayagüez, PR. Outline. Maxwell’s equations Wave equations for A and for F Power: Poynting Vector Dipole antenna. Maxwell Equations. Ampere:. Faraday:. Gauss:. Relaciones de Continuidad. Potencial Magnético Vectorial A.

arin
Download Presentation

Dipolo Infinitesimal

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Dipolo Infinitesimal Sandra Cruz-Pol, Ph. D. INEL 5305 ECE UPRM Mayagüez, PR

  2. Outline • Maxwell’s equations • Wave equations for A and for F • Power: Poynting Vector • Dipole antenna

  3. Maxwell Equations Ampere: Faraday: Gauss:

  4. Relaciones de Continuidad

  5. Potencial Magnético Vectorial A • Si lo sustituimos en la Ley de Faraday: F is the Electric Scalar Potential

  6. Usando Ley de Ampere:

  7. Lorentz’ condition • Si escogemos • Queda la Ecuacion de Onda donde J es la densidad de una fuente de corriente, si hay.

  8. de la Ec. de Gauss Eléctrica

  9. Wave equation • For sinusoidal fields (harmonics): where

  10. Outline • Maxwell’s equations • Wave equations for A and for F • Power: Poynting Vector • Dipole antenna

  11. Poynting Vector

  12. Average S Para medios sin pérdidas:

  13. Outline • Maxwell’s equations • Wave equations for A and for F • Power: Poynting Vector • Infinitesimal Dipole antenna

  14. Find A from Dipole with current J • Line charge w/uniform charge density, rL Assume the simplest solution Az(r): z Az r r q Jz x 0

  15. To find…. Assume the simplest solution Az(r):

  16. Fuera de la Fuente (J=0) Which has general solution of:

  17. Apply B.C. • If radiated wave travels outwards from the source: • To find C2, let’s examine what happens near the source. (in that case k tends to 0) • So the wave equation reduces to

  18. Now we integrate the volume around the dipole: • And using the Divergence Theorem

  19. Comparing both, we get:

  20. Now from A we can find E & H • Using the Victoria IDENTITY: • And • Substitute:

  21. The magnetic filed intensity from the dipole is:

  22. Now the E field:

  23. The electric field from infinitesimal dipole:

  24. General @Far field r> 2D2/l Note that the ratio of E/H is the intrinsic impedance of the medium.

  25. Power :Hertzian Dipole

  26. Resistencia de Radiacion • La potencia tiene parte real y parte reactiva • La potencia irradiada es: • Comparando con la P total, se halla la Impedancia • COmparando cno la Prad, halla la Rrad.

More Related