1 / 155

Understanding and Managing Cascades on Large Graphs

This tutorial explores the dynamics and implications of cascades on large networks, covering topics such as epidemics, viral marketing, information diffusion, and more.

arlenem
Download Presentation

Understanding and Managing Cascades on Large Graphs

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Understanding and Managing Cascades on Large Graphs B. AdityaPrakash Carnegie Mellon University Virginia Tech. Christos Faloutsos Carnegie Mellon University Aug 29, Tutorial, VLDB 2012, Istanbul

  2. Networks are everywhere! Facebook Network [2010] Gene Regulatory Network [Decourty 2008] Human Disease Network [Barabasi 2007] The Internet [2005] Prakash and Faloutsos 2012

  3. Dynamical Processes over networks are also everywhere! Prakash and Faloutsos 2012

  4. Why do we care? • Social collaboration • Information Diffusion • Viral Marketing • Epidemiology and Public Health • Cyber Security • Human mobility • Games and Virtual Worlds • Ecology ........ Prakash and Faloutsos 2012

  5. Why do we care? (1: Epidemiology) • Dynamical Processes over networks [AJPH 2007] CDC data: Visualization of the first 35 tuberculosis (TB) patients and their 1039 contacts Diseases over contact networks Prakash and Faloutsos 2012

  6. Why do we care? (1: Epidemiology) • Dynamical Processes over networks • Each circle is a hospital • ~3000 hospitals • More than 30,000 patients transferred [US-MEDICARE NETWORK 2005] Problem: Given k units of disinfectant, whom to immunize? Prakash and Faloutsos 2012

  7. Why do we care? (1: Epidemiology) ~6x fewer! [US-MEDICARE NETWORK 2005] CURRENT PRACTICE OUR METHOD Hospital-acquired inf. took 99K+ lives, cost $5B+ (all per year) Prakash and Faloutsos 2012

  8. Why do we care? (2: Online Diffusion) > 800m users, ~$1B revenue [WSJ 2010] ~100m active users > 50m users Prakash and Faloutsos 2012

  9. Why do we care? (2: Online Diffusion) • Dynamical Processes over networks Buy Versace™! Followers Celebrity Social Media Marketing Prakash and Faloutsos 2012

  10. Why do we care? (3: To change the world?) • Dynamical Processes over networks Social networks and Collaborative Action Prakash and Faloutsos 2012

  11. High Impact – Multiple Settings epidemic out-breaks Q. How to squash rumors faster? Q. How do opinions spread? Q. How to market better? products/viruses transmit s/w patches Prakash and Faloutsos 2012

  12. Research Theme ANALYSIS Understanding POLICY/ ACTION Managing DATA Large real-world networks & processes Prakash and Faloutsos 2012

  13. Research Theme – Public Health ANALYSIS Will an epidemic happen? POLICY/ ACTION How to control out-breaks? DATA Modeling # patient transfers Prakash and Faloutsos 2012

  14. Research Theme – Social Media ANALYSIS # cascades in future? POLICY/ ACTION How to market better? DATA Modeling Tweets spreading Prakash and Faloutsos 2012

  15. In this tutorial Given propagation models: Q1: What is the epidemic threshold? Q2: How do viruses compete? ANALYSIS Understanding Prakash and Faloutsos 2012

  16. In this tutorial Q3: How to immunize and control out-breaks better? Q4: How to detect outbreaks? Q5: Who are the culprits? POLICY/ ACTION Managing Prakash and Faloutsos 2012

  17. In this tutorial Q6: How do cascades look like? Q7: How does activity evolve over time? Q8: How does external influence act? DATA Large real-world networks & processes Prakash and Faloutsos 2012

  18. Outline • Motivation • Part 1: Understanding Epidemics (Theory) • Part 2: Policy and Action (Algorithms) • Part 3: Learning Models (Empirical Studies) • Conclusion Prakash and Faloutsos 2012

  19. Part 1: Theory • Q1: What is the epidemic threshold? • Q2: How do viruses compete? Prakash and Faloutsos 2012

  20. A fundamental question Strong Virus Epidemic? Prakash and Faloutsos 2012

  21. example (static graph) Weak Virus Epidemic? Prakash and Faloutsos 2012

  22. Problem Statement # Infected above (epidemic) below (extinction) time Separate the regimes? Find, a condition under which • virus will die out exponentially quickly • regardless of initial infection condition Prakash and Faloutsos 2012

  23. Threshold (static version) Problem Statement • Given: • Graph G, and • Virus specs (attack prob. etc.) • Find: • A condition for virus extinction/invasion Prakash and Faloutsos 2012

  24. Threshold: Why important? • Accelerating simulations • Forecasting (‘What-if’ scenarios) • Design of contagion and/or topology • A great handle to manipulate the spreading • Immunization • Maximize collaboration ….. Prakash and Faloutsos 2012

  25. Part 1: Theory • Q1: What is the epidemic threshold? • Background • Result and Intuition (Static Graphs) • Proof Ideas (Static Graphs) • Bonus: Dynamic Graphs • Q2: How do viruses compete? Prakash and Faloutsos 2012

  26. Background “SIR” model: life immunity (mumps) • Each node in the graph is in one of three states • Susceptible (i.e. healthy) • Infected • Removed (i.e. can’t get infected again) Prob. β Prob. δ t = 1 t = 2 t = 3 Prakash and Faloutsos 2012

  27. Background Terminology: continued • Other virus propagation models (“VPM”) • SIS : susceptible-infected-susceptible, flu-like • SIRS : temporary immunity, like pertussis • SEIR : mumps-like, with virus incubation (E = Exposed) ….…………. • Underlying contact-network – ‘who-can-infect-whom’ Prakash and Faloutsos 2012

  28. Background Related Work • All are about either: • Structured topologies (cliques, block-diagonals, hierarchies, random) • Specific virus propagation models • Static graphs • R. M. Anderson and R. M. May. Infectious Diseases of Humans. Oxford University Press, 1991. • A. Barrat, M. Barthélemy, and A. Vespignani. Dynamical Processes on Complex Networks. Cambridge University Press, 2010. • F. M. Bass. A new product growth for model consumer durables. Management Science, 15(5):215–227, 1969. • D. Chakrabarti, Y. Wang, C. Wang, J. Leskovec, and C. Faloutsos. Epidemic thresholds in real networks. ACM TISSEC, 10(4), 2008. • D. Easley and J. Kleinberg. Networks, Crowds, and Markets: Reasoning About a Highly Connected World. Cambridge University Press, 2010. • A. Ganesh, L. Massoulie, and D. Towsley. The effect of network topology in spread of epidemics. IEEE INFOCOM, 2005. • Y. Hayashi, M. Minoura, and J. Matsukubo. Recoverable prevalence in growing scale-free networks and the effective immunization. arXiv:cond-at/0305549 v2, Aug. 6 2003. • H. W. Hethcote. The mathematics of infectious diseases. SIAM Review, 42, 2000. • H. W. Hethcote and J. A. Yorke. Gonorrhea transmission dynamics and control. Springer Lecture Notes in Biomathematics, 46, 1984. • J. O. Kephart and S. R. White. Directed-graph epidemiological models of computer viruses. IEEE Computer Society Symposium on Research in Security and Privacy, 1991. • J. O. Kephart and S. R. White. Measuring and modeling computer virus prevalence. IEEE Computer Society Symposium on Research in Security and Privacy, 1993. • R. Pastor-Santorras and A. Vespignani. Epidemic spreading in scale-free networks. Physical Review Letters 86, 14, 2001. • ……… • ……… • ……… Prakash and Faloutsos 2012

  29. Part 1: Theory • Q1: What is the epidemic threshold? • Background • Result and Intuition (Static Graphs) • Proof Ideas (Static Graphs) • Bonus: Dynamic Graphs • Q2: How do viruses compete? Prakash and Faloutsos 2012

  30. How should the answer look like? ….. • Answer should depend on: • Graph • Virus Propagation Model (VPM) • But how?? • Graph – average degree? max. degree? diameter? • VPM – which parameters? • How to combine – linear? quadratic? exponential? Prakash and Faloutsos 2012

  31. Static Graphs: Our Main Result • Informally, • For, • any arbitrary topology (adjacency • matrix A) • any virus propagation model (VPM) in • standard literature • the epidemic threshold depends only • on the λ,firsteigenvalueof A,and • some constant , determined by the virus propagation model λ • No epidemic if λ * < 1 In Prakash+ ICDM 2011 Prakash and Faloutsos 2012

  32. Our thresholds for some models s = effective strength s < 1 : below threshold Prakash and Faloutsos 2012

  33. Our result: Intuition for λ “Official” definition: “Un-official” Intuition  λ ~ # paths in the graph • Let A be the adjacency matrix. Then λ is the root with the largest magnitude of the characteristic polynomial of A [det(A – xI)]. • Doesn’t give much intuition! u u ≈ . (i, j) = # of paths i j of length k Prakash and Faloutsos 2012

  34. Largest Eigenvalue (λ) better connectivity higher λ λ ≈ 2 λ = N λ = N-1 λ ≈ 2 λ= 31.67 λ= 999 N = 1000 N nodes Prakash and Faloutsos 2012

  35. Examples: Simulations – SIR (mumps) Fraction of Infections Footprint (a) Infection profile (b) “Take-off” plot PORTLAND graph 31 million links, 6 million nodes Effective Strength Time ticks Prakash and Faloutsos 2012

  36. Examples: Simulations – SIRS (pertusis) Fraction of Infections Footprint (a) Infection profile (b) “Take-off” plot PORTLAND graph 31 million links, 6 million nodes Time ticks Effective Strength Prakash and Faloutsos 2012

  37. Part 1: Theory • Q1: What is the epidemic threshold? • Background • Result and Intuition (Static Graphs) • Proof Ideas (Static Graphs) • Bonus: Dynamic Graphs • Q2: How do viruses compete? Prakash and Faloutsos 2012

  38. Proof Sketch General VPM structure Model-based λ * < 1 Graph-based Topology and stability Prakash and Faloutsos 2012

  39. Models and more models Prakash and Faloutsos 2012

  40. Ingredient 1: Our generalized model Endogenous Transitions Endogenous Transitions Susceptible Susceptible Infected Infected Exogenous Transitions Vigilant Vigilant Endogenous Transitions Prakash and Faloutsos 2012

  41. Special case: SIR Susceptible Infected Vigilant Prakash and Faloutsos 2012

  42. Special case: H.I.V. “Non-terminal” “Terminal” Multiple Infectious, Vigilant states Prakash and Faloutsos 2012

  43. Details Ingredient 2: NLDS+Stability size N (number of nodes in the graph) S • Probability vector Specifies the state of the system at time t . . . size mNx 1 I V . . . . . • View as a NLDS • discrete time • non-linear dynamical system (NLDS) Prakash and Faloutsos 2012

  44. Details Ingredient 2: NLDS + Stability Non-linear function Explicitly gives the evolution of system . . . size mNx 1 . . . . . • View as a NLDS • discrete time • non-linear dynamical system (NLDS) Prakash and Faloutsos 2012

  45. Ingredient 2: NLDS + Stability • View as a NLDS • discrete time • non-linear dynamical system (NLDS) • Threshold  Stability of NLDS Prakash and Faloutsos 2012

  46. Details Special case: SIR S S size 3Nx1 I I R R = probability that node iis not attacked by any of its infectious neighbors NLDS Prakash and Faloutsos 2012

  47. Details Fixed Point 1 1 . 0 0 . 0 0 . State when no node is infected Q: Is it stable? Prakash and Faloutsos 2012

  48. Stability for SIR Stable under threshold Unstable above threshold Prakash and Faloutsos 2012

  49. General VPM structure Model-based See paper for full proof λ * < 1 Graph-based Topology and stability Prakash and Faloutsos 2012

  50. Part 1: Theory • Q1: What is the epidemic threshold? • Background • Result and Intuition (Static Graphs) • Proof Ideas (Static Graphs) • Bonus: Dynamic Graphs • Q2: How do viruses compete? Prakash and Faloutsos 2012

More Related