1 / 55

Design of Algorithms by Induction Part 1

Design of Algorithms by Induction Part 1. Algorithm Design and Analysis Bibliography: [Manber]- Chap 5. Algorithm Analysis <-> Design. Given an algorithm, we can Analyze its complexity Proof its correctness But:

arletta
Download Presentation

Design of Algorithms by Induction Part 1

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Design of Algorithms by InductionPart 1 Algorithm Design and Analysis Bibliography: [Manber]- Chap 5

  2. Algorithm Analysis <-> Design • Given an algorithm, we can • Analyze its complexity • Proof its correctness • But: • Given a problem, how do we design a solution that is both correct and efficient ? • Is there a general method for this ?

  3. Induction proofs vs Design of algorithms by induction (1) • Induction used to prove that a statement P(n) holds for all integers n: • Base case: Prove P(0) • Assumption: assume that P(n-1) is true • Induction step: prove that P(n-1) implies P(n) for all n>0 • Strong induction:when we assume P(k) is true for all k<=n-1 and use this in proving P(n)

  4. Induction proofs vs Design of algorithms by induction (2) • Induction used in algorithm design: • Base case: Solve a small instance of the problem • Assumption: assume you can solve smaller instances of the problem • Induction step: Show how you can construct the solution of the problem from the solution(s) of the smaller problem(s)

  5. Design of algorithms by induction • Represents a fundamental design principle that underlies techniques such as divide & conquer, dynamic programming and even greedy • How to reduce the problem to a smaller problem or a set of smaller problems ? (n -> n-1, n/2, n/4, …?) • Examples: • The successful party problem [Manber 5.3] • The celebrity problem [Manber 5.5] • The skyline problem [Manber 5.6] • One knapsack problem [Manber 5.10] • The Max Consecutive Subsequence [Manber 5.8] Part 1 Part 2

  6. The successful party problem • Problem: you are arranging a party and have a list of n persons that you could invite. In order to have a successful party, you want to invite as many people as possible, but every invited person must be friends with at least k of the other party guests. For each person, you know his/her friends. Find the set of invited people.

  7. Successful party - Example K=3 Ann Bob Finn Chris Ellie Dan

  8. Successful party - Example K=3 Ann Bob Finn Chris Ellie Dan

  9. Successful party - Example K=3 Ann Bob Finn Ellie Dan

  10. Successful party - Example K=3 Ann Bob Ellie Dan Party: {Ann, Bob, Dan, Ellie}

  11. Successful party – Example 2 K=3 Ann Bob Finn Chris Ellie Dan

  12. Successful party – Example 2 K=3 Ann Bob Finn Chris Ellie Dan

  13. Successful party – Example 2 K=3 Ann Bob Finn Ellie Dan

  14. Successful party – Example 2 K=3 Ann Bob Ellie Dan

  15. Successful party – Example 2 K=3 Bob Ellie Dan No party possible !

  16. Successful party – Direct approach • Direct approach for solving: remove persons who have less than k friends • But: which is the right order of removing ? • Remove all persons with less than k friends, then deal with the persons that are left without enough friends ? • Remove first one person, then continue with affected persons ? Instead of thinking about our algorithm as a sequence of steps to be executed, think of proving a theorem that the algorithm exists

  17. The design by induction approach • Instead of thinking about our algorithm as a sequence of steps to be executed, think of proving a theorem that the algorithm exists • We need to prove that this “theorem” holds for a base case, assume that it holds for “n-1”, and then prove that if it holds for “n-1” this implies that it holds for “n”

  18. Successful party - Solution • Induction hypothesis:We know how to find the solution (maximal list of invited persons that have at least k friends among the other invited persons), provided that the number of given persons is <n • Base case: • n<= k: no person can be invited • n=k+1:if every person knows all of the other persons, everybody gets invited. Otherwise, no one can be invited.

  19. Successful party - Solution • Inductive step: • Assume we know how to select the invited persons out of a list of n-1, prove that we know how to select the invited persons out of a list of n, n>k+1 • If all the n persons have more than k friends among them, all n persons get invited => problem solved • Else, there exists at least one person that has less than k friends. Remove this person and the solution is what results from solving the problem for the remaining n-1 persons. By induction assumption, we know to solve the problem for n-1 => problem solved

  20. Party – Designing the Solution Function Party(ps : PersonSet) n = card (ps) if n <= k then * no person is invited return if n = k+1 then if (*everybody is friend with everybody in ps) * invite all persons from ps return if (*everybody from ps has at least k friends from ps) * invite all persons from ps return * Find first person p who has less than k friends ps2 = ps – {p} party(ps2) return

  21. Party – Designing the Solution Function Party(ps : PersonSet) n = card (ps) if n <= k then * no person is invited return if n = k+1 then if (*everybody is friend with everybody) * invite all persons from ps return if (*everybody has at least k friends in the set ps) * invite all persons from ps return * Find first person p who has less than k friends ps2 = ps – {p} party(ps2) return Designing the algorithm (thinking about the solution) is very often a naturally recursive process. The implementation does NOT need to be recursive !

  22. Party – The Solution – No Recurs. Function Party(ps : PersonSet) n = card (ps) while (n > k) if (*everybody has at least k friends in ps) * invite all persons from ps return * Find first person p who has less than k friends ps = ps – {p} * no person can be invited return

  23. Party – The Solution – No Recurs. Function Party(ps : PersonSet) n = card (ps) while (n > k) if (*everybody has at least k friends in ps) * invite all persons from ps return * Find first person p who has less than k friends ps = ps – {p} * no person can be invited return Designing the algorithm (thinking about the solution) is often done in abstract terms. The implementation will chose the best datastructures to represent these abstractions

  24. Successful party - Conclusions • Designing by induction got us to a correct algorithm, because we designed it like proving its correctness • Every invited person knows at least k other invited • We got the maximum possible number of invited persons • The best way to reduce a problem is to eliminate some of its elements. • In this case, it was clear which persons to eliminate • We will see examples where the elimination is not so straightforward

  25. The Celebrity problem • Problem: A celebrity in a group of people is someone who is known by everybody but does not know anyone. You are allowed to ask anyone from the group a question such as “Do you know that person?” pointing to any other person from the group. Identify the celebrity (if one exists) by asking as few questions as possible • Problem: • Given a n*n matrix “know” with know[p, q] = true if p knows q and know[p, q] = false otherwise. • Determine whether there exists an i such that: • Know[j; i] = true (for all j, j≠ i) and Know[i; j] = false (for all j, j≠i )

  26. Celebrity problem i 1 1 1 1 0 i 0 0 0 1

  27. Celebrity - Solution 1 • Brute force approach: ask questions arbitrary, for each person ask questions for all others => n*(n-1) questions asked

  28. Celebrity - Solution 2 • Use induction: • Base case: Solution is trivial for n=1, one person is a celebrity by definition. • Assumption: Assume we leave out one person and that we can solve the problem for the remaining n-1 persons. • If there is a celebrity among the n-1 persons, we can find it • If there is no celebrity among the n-1 persons, we find this out • Induction step: • For the n'th person we have 3 possibilities: • The celebrity was among the n-1 persons • The n’th person is the celebrity • There is no celebrity in this group

  29. Celebrity - Sol 2- Induction step • We must solve the problem for n persons, assuming that we know to solve it for n-1 • We leave out one person. • We choose this person randomly – let it be the n’th person (suppose persons are numbered 1..n) • Case 1: There is a celebrity among the n-1 persons, say p. To check if this is also a celebrity for the n'th person • check if know[n, p] and not know[p, n] • Case 2: There is no celebrity among the n-1 persons. In this case, either person n is the celebrity, or there is no celebrity in the group. • To check this we have to find out if know[i, n] and not know[n, i], for all i <>n.

  30. Celebrity – Solution 2 Function Celebrity_Sol2(n:integer) returns integer if n = 1 then return 1 else p = Celebrity_Sol2(n-1); if p != 0 then // p is the celebrity among n-1 if( knows[n,p] and not knows[p,n] ) then return p end if return 0 end if forall i = 1..n-1 if (knows[n, i] or not knows[i, n]) then return 0 // there is no celebrity end if end for return n // n is the celebrity

  31. Celebrity – Solution 2 Analysis T(n) Function Celebrity_Sol2(n:integer) returns integer if n = 1 then return 1 else p = Celebrity_Sol2(n-1); if p != 0 then // p is the celebrity among n-1 if( knows[n,p] and not knows[p,n] ) then return p end if return 0 end if forall i = 1..n-1 if (knows[n, i] or not knows[i, n]) then return 0 // there is no celebrity end if end for return n // n is the celebrity T(n-1) O(n)

  32. Celebrity – Solution 2 Analysis • T(n)=T(n-1) + n • T(1)=1 • T(n)=1+2+3+ +n=n*(n+1)/2 • T(n) is O(n2) • We have reduced a problem of size n to a problem of size n-1. We then still have to relate the n-th element to the n-1 other elements, and here this is done by a sequence which is O(n), so we get an algorithm of complexity O (n2), which is the same as the brute force. • If we want to reduce the complexity of the algorithm to O(n), we should have T(n)=T(n-1)+c

  33. Celebrity – Solution 3 • The key idea here is to reduce the size of the problem from n persons to n-1, but in a clever way – by eliminating someone who is a non-celebrity. • After each question, we can eliminate a person • if knows[i,j] then i cannot be a celebrity => elim i • if not knows[i,j] then j cannot be a celebrity => elim j

  34. Celebrity - Solution 3 • Use induction: • Base case: Solution is trivial for n=1, one person is a celebrity by definition. • Assumption: Assume we leave out one person who is not a celebrity and that we can solve the problem for the remaining n-1 persons. • If there is a celebrity among the n-1 persons, we can find it • If there is no celebrity among the n-1 persons, we find this out • Induction step: • For the n'th person we have only 2 possibilities left: • The celebrity was among the n-1 persons • There is no celebrity in this group

  35. Celebrity - Sol 3- Induction step • We must solve the problem for n persons, assuming that we know to solve it for n-1 • We leave out one person. In order to decide which person to elim, we ask a question (to a random person i about a random person j). • The eliminated person is e=i or e=j, and we know that e is not a celebrity • Case 1: There is a celebrity among the n-1 persons that remain after eliminating e, say p. To check if this is also a celebrity for the person e • check if know[e, p] and not know[p, e] • Case 2: There is no celebrity among the n-1 persons. In this case, there is no celebrity in the group. It is no need any more to check if e is a celebrity !

  36. Celebrity – Solution 3 Function Celebrity_Sol3(S:Set of persons) return person if card(S) = 1 return S(1) pick i, j any persons in S if knows[i, j] then // i no celebrity elim=i else // if not knows[i, j] then j no celebrity elim=j p = Celebrity_Sol3(S-elim) if p != 0 and knows[elim,p] and not knows[p,elim] return p else return 0 // no celebrity end if end if end function Celebrity_Sol3

  37. Celebrity – Solution 3 Analysis Function Celebrity_Sol3(S:Set of persons) return person if card(S) = 1 return S(1) pick i, j any persons in S if knows[i, j] then // i no celebrity elim=i else // if not knows[i, j] then j no celebrity elim=j p = Celebrity_Sol3(S-elim) if p != 0 and knows[elim,p] and not knows[p,elim] return p else return 0 // no celebrity end if end if end function Celebrity_Sol3 T(n)=T(n-1)+c Algorithm is O(n)

  38. Celebrity – Eliminate Recursivity • Designing a solution can be done more naturally in recursive terms • Having an efficient implementation requires to eliminate recursivity • Iterative Implementation: • Start with n candidates • Ask one question and eliminate one candidate • Repeat until only one candidate is left • It is necessary to verify if the only candidate left is the celebrity, or otherwise no celebrity is in the group

  39. Celebrity – No Recursivity Function Celebrity_Sol3_NonRecursive(S:Set of persons) return person forall p in S do Push (p, Stack) while (Stack has more than 1 person) do i=Pop(Stack) j=Pop(Stack) if knows[i, j] then stays=j; else stays=i; Push(stays, Stack); end while p = Pop(Stack) // if there is a celebrity, then it is p foralli = 1..n if (i<>p) and (knows[p, i] or not knows[i, p]) then return 0 // there is no celebrity return p // the last person not eliminated is the celeb end function Celebrity_Sol3_NonRecursive

  40. Celebrity – No Rec - Analysis Function Celebrity_Sol3_NonRecursive(S:Set of persons) return person forall p in S do Push (p, Stack) while (Stack has more than 1 person) do i=Pop(Stack) j=Pop(Stack) if knows[i, j] then stays=j; else stays=i; Push(stays, Stack); end while p = Pop(Stack) // if there is a celebrity, then it is p foralli = 1..n if (knows[p, i] or not knows[i, p]) then return 0 // there is no celebrity return p // the last person not eliminated is the celeb end function Celebrity_Sol3_NonRecursive O(n) O(n) O(n) O(n)

  41. Celebrity - Conclusions • The size of the problem should be reduced (from n to n-1) in a clever way • This example shows that it sometimes pays off to expend some effort ( in this case – one question) to perform the reduction more effectively • Even if recursivity is used in the design phase, the implementation can be done iteratively

  42. The Skyline Problem • Problem: Given the exact locations and heights of several rectangular buildings, having the bottoms on a fixed line, draw the skyline of these buildings, eliminating hidden lines.

  43. The Skyline Problem • A building Bi is represented as a triplet (Li, Hi, Ri) • A skyline of a set of n buildings is a list of x coordinates and the heights connecting them • Input (1,11,5), (2,6,7), (3,13,9), (12,7,16), (14,3,25), (19,18,22), (23,13,29), (24,4,28) • Output (1, 11), (3, 13), (9, 0), (12, 7), (16, 3), (19, 18), (22, 3), (23, 13), (29, 0)

  44. Skyline – Solution 1 • Base case: If number of buildings n=1, the skyline is the building itself • Inductive step: We assume that we know to solve the skyline for n-1 buildings, and then we add the n’th building to the skyline

  45. Adding OneBuilding to the Skyline • MergeBuilding(building, skyline): We scan the skyline, looking at one horizontal line after the other, and adjusting when the height of the building is higher than the skyline height Worst case: O(n) Bn

  46. Skyline – Solution 1 Analysis T(n) Algorithm Skyline_Sol1(n:integer) returns Skyline if n = 1 then return Building[1] else sky1 = Skyline_Sol1(n-1); sky2 = MergeBuilding(Building[n], sky1); return sky2; end algorithm T(n-1) O(n) T(n)=T(n-1)+O(n) O(n2)

  47. Skyline – Solution 2 • Base case: If number of buildings n=1, the skyline is the building itself • Inductive step: We assume that we know to solve the skylines for n/2 buildings, and then we merge the two skylines

  48. Merging two skylines • MergeSkyline(sky1, sky2): We scan the two skylines together, from left to right, match x coordinates and adjust height where needed n1 n2 Worst case: O(n1+n2)

  49. Skyline – Solution 2 Analysis T(n) Algorithm Skyline_Sol2(left, right:integer) returns Skyline if left=right then return Building[left] else middle=left+(left+right)/2 sky1 = Skyline_Sol2(left, middle); sky2 = Skyline_Sol2(middle+1, right); sky3 = MergeSkylines(sky1, sky2); return sky3; end algorithm T(n/2) T(n/2) O(n) T(n)=2T(n/2)+O(n) O(n log n)

  50. Skyline - Conclusion • When the effort of combining the subproblems cannot be reduced, it is more efficient to split into several subproblems of the same type which are of equal sizes • T(n)=T(n-1)+O(n) … O(n2) • T(n)=2T(n/2)+O(n) … O(n log n) • This technique is Divide and conquer

More Related