200 likes | 418 Views
Hálótervezés. Készítette: Kosztyán Zsolt Tibor kzst@almos.vein.hu kzst@vision.vein.hu http ://vision.vein.hu/~kzst/oktatas/halo/index.htm. 9. Véletlen tartamú tevékenységek.
E N D
Hálótervezés Készítette: Kosztyán Zsolt Tibor kzst@almos.vein.hu kzst@vision.vein.hu http://vision.vein.hu/~kzst/oktatas/halo/index.htm 9.
Véletlen tartamú tevékenységek • A gyakorlatban számos esetben – főleg kutatási és fejlesztési programokra – a tevékenységek tartamai kevéssé ismertek, és nem determinisztikusan meghatározottak. Ilyenkor két eset fordulhat elő: • A szóban forgó tevékenységek vagy nem teljesen ismeretlenek és mindegyikükre közelítőleg ismerjük a tartamuk valószínűségeloszlását. (ipar) • vagy pedig teljesen ismeretlenek és nem ismerjük minden tartam valószínűségeloszlását. (kutatás)
Véletlen tartamú tevékenységek • Ha nem ismerjük a tartamok eloszlását, akkor a számítások megkönnyítése érdekében, tfh. a tartamok b-eloszlást követnek.
Véletlen tartamú tevékenységek • Az [A, B] intervallumon (A>0, B>0) értelmezett (a, g) paraméterű b-eloszlásnak nevezik a t valószínűségi változó eloszlását, ha sűrűségfüggvénye az alábbi alakú: ahol a,g>-1
Véletlen tartamú tevékenységek az ún. elsőfajú Euler-féle függvény és az ún. másodfajú Euler-féle függvény. A standardizált b-eloszlást a következő lineáris transzformációval nyerjük: t=A+(B-A)u.
Véletlen tartamú tevékenységek • A transzformált sűrűségfüggvény: • A standardizált b-eloszlás várható értéke, és szórása:
Véletlen tartamú tevékenységek • A nem standardizált b-eloszlás várható értéke és szórása: • Az eloszlás módusza (f’(t)=0 helyen felvett értéke):
Véletlen tartamú tevékenységek • Ezért M(t)-t így is írhatjuk: • A PERT-módszerben hallgatólagosan az alábbi értékeket választottuk: vagy
Véletlen tartamú tevékenységek • Ebből a várható érték, illetve a szórás: ha:
Véletlen tartamú tevékenységek – PERT módszer • A PERT-módszerben olyan (első rendű) b-eloszlást választunk, amelyre:
Véletlen tartamú tevékenységek – PERT módszer • Minden egyes tevékenységről az azzal foglalkozó szakemberekhez a következő három kérdést intézzük: • Mennyire becsüli az (i,j) tevékenység Ai,j minimális időtartamát (optimista becslés)? Legyen ai,j a minimális időtartam becsült értéke. • Mennyire becsüli az (i,j) tevékenység Bi,j maximális időtartamát (pesszimista becslés)? Legyen bi,j a maximális időtartam becsült értéke. • Véleménye szerint mennyi az (i,j) tevékenység Mi,j legvalószínűbb időtartama (módusza)? Legyen mi,j a legvalószínűbb időtartam becsült értéke.
Véletlen tartamú tevékenységek – PERT módszer • Ekkor a becslés várható értéke, illetve szórása: • Ekkor felhasználjuk azt, hogy a független valószínűségi változók összegének várható értéke megegyezik a valószínűségi változók várható értékének összegével, ha elegendően sok változóra összegzünk, hiszen elegendően sok valószínűségi változó esetén az összeg normális eloszlásúnak mondható.
Véletlen tartamú tevékenységek – PERT módszer • Ekkor felhasználjuk a független valószínűségi változók várható értékeire, illetve varianciáira vonatkozó additivitási összefüggéseket:
PERT háló felrajzolása, tartamok, bizonytalanság kiszámítása • Logikai háló elkészítése. • Ai,j, Bi,j ,Mi,j, ti,j, si,j meghatározása. • Megfelelő hálós modell kiválasztása (tevékenység-nyíl, tevékenység-csomópontú). • A (tanult módszerekkel a) kritikus út kiszámítása. • A megvalósítási idő szórásának kiszámítása.
PERT háló - példa • Mennyi annak az esélye, hogy a programot 63 nap alatt befejezzük? Ebből következik, hogy 75% annak az esélye, hogy a programot 63 napig befejezzük.