1 / 33

Experimental generation and characterisation of private states

Experimental generation and characterisation of private states. Konrad Banaszek Rafa ł Demkowicz -Dobrzański Michał Karpiński Wydział Fizyki Uniwersytet Warszawski Krzysztof Dobek Wydział Fizyki, Uniwersytet Adama Mickiewicza w Poznaniu. Paweł Horodecki

armand
Download Presentation

Experimental generation and characterisation of private states

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Experimentalgenerationand characterisation of privatestates KonradBanaszekRafał Demkowicz-DobrzańskiMichał Karpiński Wydział Fizyki Uniwersytet Warszawski Krzysztof Dobek Wydział Fizyki, Uniwersytet Adama Mickiewicza w Poznaniu Paweł Horodecki Wydział Fizyki Technicznej i Matematyki Stosowanej, Politechnika Gdańska Karol Horodecki Instytut Informatyki, Uniwersytet Gdański TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAAAAAAAA

  2. - - Bell’sinequalities + + B:b = 22.5o A:a = 45o B’:b = 67.5o A’:a = 0o isviolated! Clauser-Horne-Shimony-Holtinequality

  3. A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991) For eachphotonpair Alice and Bob selectrandomlymeasurementbases… Quantum cryptography B1:b = 22.5o A1:a = 45o A2:a = 0o B2:b = 67.5o B3:b = 0o …and comparemeasurementsover a public channel afterwards. Perfectcorrelations one-time pad Security test

  4. P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, Phys. Rev. A 60, R773 (1999) Entangledphotonpairs Output state:

  5. Correlationmeasurements

  6. Entanglementmonogamy Alice Eve Bob • Evenwhen the pairhasbeenprepared by Eve… • …if Alice and Bob verifythat the systems arrived in a maximallyentangledpure state… • …measurementresults will be knownonly to Alice and Bob.

  7. Define: Equallyweightedmixture: Statisticalmixture Eve Alice Bob

  8. Statisticalmixture Maximallyentangled state Densitymatrix Correlationsbetweenmeasurementoutcomes in the keybasis Security tested by the violation of Bell’sinequalities (Iftrusting quantum theory, could be alsotested by measurements in the basis.)

  9. Noisyentanglement How much securekeycan be extractedfrom a noisy state?

  10. C. H. Bennett et al., Phys. Rev. Lett. 76, 722 (1996) Distillation M … … N Distillableentanglement:

  11. A B Example I B’ A’ Shieldstates: enable Alice and Bob to distinguishlocally and generate the keyusing the standard strategy. Hence

  12. A B B’ Example II A’ Whatif • States and cannot be discriminatedunambiguouslyusinglocal operations and classicalcommunication. • Distillableentanglementbounded by log-negativity:

  13. K. Horodecki, M. Horodecki, P. Horodecki, and J. Oppenheim,Phys. Rev. Lett. 94, 160502 (2005) Eavesdropping B B’ AA’ E Theworstcasescenario: allthenoiseiscontrolled by Eve

  14. Alice measuresanoutcomeawith a probability Alice  Eve channel Eveinfersa from the conditionalstate of hersubsystemE: Holevoquantity:

  15. Mutual information B B’ AA’ Keyrate Holevoquantity E Keyrate For Example II, Eve’ssubsystemcontains no informationaboutoutcomes of Alice’smeasurement on herqubit, henceKD = 1.

  16. Withouttheshield: Shield key security Thecomplete state: AB   00     01     10   11

  17. Doublephotonpairs B’ A B Output state: A’

  18. Experimental setup

  19. Projectivequbitmeasurements: Four-qubit POVM: Quantum statetomography 34 = 81 measurementbases 34 x 24 = 1296 eventtypes Probability of an outcomei: Densitymatrixestimate : number of eventsi

  20. Z. Hradil, Phys. Rev. A 55, R1561 (1997) Probability of an outcomei: Maximumlikelihoodreconstruction – number of eventsi Likelihoodfunction: Maximum-likelihoodestimatemaximizes

  21. K. Banaszek, G. M. D’Ariano, M. G. A. Paris, and M. F. Sacchi,Phys. Rev. A61, 010304(R) (1999) Ensuringpositivity: ML: Parametrisation Task: maximize with a constraint PRO: - Guaranteedpositivity CON: • Impracticalinhigherdimensions (>6 qubits) • Underestimateserrors, difficult to includeuncertainty of the measuringdevice (Monte Carlo simulations) • Biasedtowardslow-rankmatrices for undersampled data

  22. K. Audenaertand S. Scheel, New J. Phys. 11, 023028 (2009) A priori distribution Bayesianapproach A posteriori: Estimate: • Gaussianapproximation • Truncated to positivedefinitedensityoperators PRO: • Clear statisticalinterpretation • Providesuncertainty • No numericaloptimisation CON: • Difficult to normaliseprobabilitydistribution • A priori distribution not welldefined

  23. K. Dobek. M. Karpiński, R. Demkowicz-Dobrzański, K. Banaszek,and P. Horodecki, Phys. Rev. Lett. 106, 030501 (2011) State reconstruction Mahalanobisdistance = 16.8 95% confidenceinterval = 17.1

  24. A posteriori ensemble Privacycharacterisation Warning: More conservative Distillableentanglement: ED 0.581(4) Key (cqqscenario): K  0.690(7)

  25. Distillationprotocol MeasurequbitsA′B′ inthe same basis. 50% 50% Identicaloutcomes Oppositeoutcomes

  26. Reduceddensitymatrix conditional average Single-copydistillation identicaloutcomesA′B′ oppositeoutcomesA′B′ K = 0.354(5) K = 0

  27. Distillation-basedapproach Optimalstrategy Cryptographickey Raw key: 3716 bits Raw key: 1859 bits Errorcorrection 2726 bits  1300 bits Privacyamplification Securekey: 2164 bits Securekey:  650 bits

  28. Complete densitymatrix for key and shieldsubsystems: Witnessingprivacy where

  29. K. Horodecki et al., IEEE Trans. Inf. Theory54, 2621 (2008); ibid. 55, 1898 (2009). In general: Keybound where

  30. K. Banaszek, K. Horodecki, and P. Horodecki,Phys. Rev. A 85, 012330 (2012) Suppose we havemeasured Single witness where Thisprovidesanestimate

  31. K. Banaszek, K. Horodecki, and P. Horodecki,Phys. Rev. A 85, 012330 (2012) Positivity of impliesthat Single witness Take the worst-casescenario for K w

  32. K. Banaszek, K. Horodecki, and P. Horodecki,Phys. Rev. A 85, 012330 (2012) Twoobservables We have:

  33. Experimentaldemonstrationof the separationbetweendistillableentanglement and cryptographickeycontents • Practicalcomparison of quantum state reconstructionmethods for a noisymultiqubit state • Fullprivacyanalysisbased on thereconstructed state • Evaluation of highlynon-linearinformationtheoreticquantities • Implementation of a simpleentanglementdistillationprotocol • Witnessingprivacy with fewobservables • Multipledegrees of freedom? Conclusions

More Related