400 likes | 475 Views
ハイパーノバとブラックホール Hypernovae and Black Holes. 野本憲一 (Nomoto, Ken’ichi) 前田啓一 (Maeda, Keiichi) 東京大学大学院理学系研究科天文学専攻 University of Tokyo, School of Science, Department of Astronomy. E ~ 30×10 51 ergs. E ~ 1×10 51 ergs. SN 1998bw. SN 1987A. =. SN 1998bw.
E N D
ハイパーノバとブラックホールHypernovae and Black Holes 野本憲一 (Nomoto, Ken’ichi) 前田啓一 (Maeda, Keiichi) 東京大学大学院理学系研究科天文学専攻 University of Tokyo, School of Science, Department of Astronomy
E ~ 30×1051ergs E ~ 1×1051ergs SN 1998bw SN 1987A =
SN 1998bw Hypernova CandidatesEkinetic > (5-10)×1051ergs GRB 980425
Observations: Spectra, Light Curves • Progenitors, Energetic, M(56Ni) • The properties of Hypernova Explosions • Features unexpected by spherical models • Black Hole Formation • Jet-Driven Explosion Model • Explains the above features? • Predictions • Evolution of the central black hole. • Nucleosynthetic features (e.g., 56Ni) • Gravitational wave (?) - Optical Display - Abundances
Possible Gravitational Wave from Hypernovae? • MBH~4M • Low Viscosity Case M (R<300km) • 0.0033 M • High Viscosity Case • 2.21 M • j~1017 cm2s-1 • Self-Gravity • Large EROT/|EGRAV| Macfadyen et al. 1998
j~1016cm2s-1 j~1017cm2s-1 MDISK~2M M~1M R ~100km R ~100km at Bounce J Conserve J Conserve Bar Mode Instability? h~4×10-20 (1Mpc/D) (j/1017cm2s-1) (M/M) (f/1000Hz) f~1000 (j/1017cm2s-1) (100km/R)2 e.g., Fryer et al.2002 SN at 10Mpc (1SN/year); f~100 Hz, h~4×10-23 HN at 100Mpc (1HN/year); f~1000 Hz, h~8×10-22
SiII Ia O Ca He Ib Ic 94I 97ef Hyper-novae 98bw Spectra of Supernovae & Hypernovae Ic: no H, no strong He, no strong Si Hypernovae: broad features blended lines “Large mass at high velocities”
Light Curves of Supernovae & Hypernovae Light Curve Broadness SN1998bw >> SN1994I Ejected Mass SN1998bw >> SN1994I Progenitor’s Mass SN1998bw >> SN1994I
CO Star Models for SNeIc H-rich He 56Fe C+O 56Co MC+O Si 56Ni Fe Collapse • ~ [dyn• diffusion]1/2 ~• 1/2 Mej R V R c Parameters [Mej, E, M(56Ni)] Light Curve Spectra E Mej ½Mej¾E -¼ 56Ni E Mej3
Spectral Fitting: SN1997ef Model Normal SN Small Mej Too Narrow Features
Spectral Fitting: SN1997ef Model Hypernova Large Mej Broad Features
Most Stars (>25M) explode as Hypernovae? • The Contribution of Hypernovae is Large. • Hypernovae are Not so Rare Events.
Distribution of HNe Distance – Absolute Magnitude of SNe Ib/c • 1 HN per 1 year in R<100Mpc. • 1 SN per 1 year in R<10Mpc. 10 100 Mpc
HNIb/c SNIb/c Hypernova Rate • Large Fraction of Massive O (or He) Star with M>20M Explodes as Hypernovae. Depending on Binary Evolution? Corrected1) Observed2)111 18 54 183 1)Cappellaro et al. 99, 2)Richardson et al. 01 N(20M-50M) N(8M-20M) = 3(+1+2)/18 ~ 0.15 – 0.3 ~ 0.3 (Salpeter IMF)
Properties of Hypernova Explosions(1)Deviation from spherical explosion models(2)Black hole formation
1) Asphericity in Core-collapse SNe (in general) SN1987A: Asymmetrical, but not spherical, ejecta Optical Polarization in core-collapse SNe > 0.5 % (in SNe Ia < 0.2 - 0.3%) HST Image of SN1987A Wang et al. 2002 Optical Spectropolarimetryof SNe 1993J, 1996cb, Wang et al. 1999
2) Light Curves of Hypernovae 1998bw 1997ef 2002ap 1998bw 1997ef 2002ap Low Density (Vacuum) High Density Spherical Hydro Model Maeda et al. 2003, ApJ, submitted
O Fe Expansion Observer 3) Late time spectra of SN1998bw Line Width Inversion between Fe and O [OI] 6300A FWHM FeII] 5200A Observation Spherical Broader Fe lines than O lines in the observations. Low velocity O-rich Matter: SNe1998bw, 1997ef
[OI] 6300A 56Fe 16O Interpretation as an Aspherical explosion FeII] 5200A Observation Spherical 15 deg Aspherical Maeda et al. 2002
SN matter BH 4) BH Formation [X/H]=log10(X/H)-log10(X/H) • Enhancement of O,Mg,Si,S,Ti by a factor of 6-10. Israelian et al. 1999
SN BH Hypernova model for the formation of the BH in Nova Sco BH mass in the model 4.8M at the explosion 5.4M now (Post SN) MMS=40M, MHe=16M, E51=30 MBH at the explosion ~ 5M Black hole formation with a Hypernova explosion. Podsiadlowski et al. 2002
The properties of hypernova explosions • High velocity material (Fe) • Low velocity & high density material (O) • Contrary to conventional spherical models. • forms a black hole, but explodes with large E51(= E/1051ergs > 10). • Black hole formation does not always leads to a failed supernova. Do jet-induced explosions satisfy these conditions?
MRem0 1.0 – 3.0M 15o Radiation+Pairs Ejet = Mc2 , 0.01 Postprocessing 222 isotopes (Tielemann et al.) Model: Jet-induced Explosion 16MHe (MMS=40), 8M He (MMS=25), (Nomoto&Hashimoto 1988) NewtonianGravity K. Maeda, in preparation
Collimated jets (Z) + Bow shock (All direction) M Lateral expansion Log (Density[g cm-3]) Radial Velocity/c Hydrodynamics R/1010cm
Hydrodynamics (Center) Density Radial Velocity Accretion from the side Continue to accrete, MBH R/1010cm
0.7 s 1.5 s E51=11, MBH(final)=5.9M, M(56Ni)=0.11M Outflow Inflow R/1010cm
Jet (R) Sph (E51=1) Sph (E51=10) Jet (z) (E51=11) Density Distribution High density core at the central region High velocity material along z
MBH Inefficient Jet 8 efficient Jet 4 0 20 40 Time (sec) Growth of a central remnant MREM can be ~ 5 – 10M, starting from 1.5 – 3M. Still a strong explosion follows (E51>10). A hypernova with a stellar mass black hole (X-ray Novasco; Large Si,S with black hole formation).
Final Remnants’ masses and Kinetic Energies 11 • A more massive star makes a more energetic explosion (As seen in ‘Hypernova Branch’). 6.9 5.9 1.9 E51=E/1051ergs MBH(M)
T/109K Peak Temperature & Density Z Z 8 Ejected • High T + Low Material are preferentially ejected. 4 R Accreted 0 R Spherical Ejected Accreted 4 6 8 Log(Density[g cm-3])
Fe, O Distribution 0.5 0.1 0.01 E51(=E/1051ergs)=10, MREM=6M, M(56Ni)=0.1M 56Ni(56Fe) Vz (/109cm s-1) 6 4 2 High Velocity Fe Low Velocity O 0 Vr 2 4 6 16O
Relation in MREM and M(56Ni) LOptical (M) 40M 20M (M) Efficient e.g., rotation inefficient GW: GW:
Velocity Inversion of isotopes Fe Zn O Mn V(Fe) > V(O), V(Zn) > V(Mn) Prediction Ejection of heavier isotopes with higher V Spherical; Zn Fe Mn O T , Inner (smaller V)
Jet (Z) Jet (R) O Fe and heavier Spherical Jet (all direction)
Abundances in the whole ejecta Spherical, 1052ergs, 0.1M Ni Mn O, Mg Co,Zn Jet-Driven,1052ergs, 0.1MNi
Possible Contribution to the early Galactic Chemical Evolution [X/Y] = log(X/Y) – log(X/Y) Past More Massive Star Jet model: [Zn/Fe] ,[Mn/Fe] Agrees with the abundances in old stars.
[S/Si] 56Ni Sph -1 -0.5 0 -1 -0.5 0 Jet 25M 40M Accretion MBH/M 0 1 2 3 0 5 10 [Si/O] -0.6 -0.4 -0.2 0 -0.6 -0.4 -0.2 0 Accretion [S/Si],[Si/O] S Si O
[Mg/O] Accretion [Mg/O] ,[C/O] -0.2 0 0.2 0.4 -0.2 0 0.2 0.4 25M 40M Accretion MBH/M 0 5 10 0 1 2 3 [C/O] Jet -1.4 -1.2 -1 -0.8 -1.4 -1.2 -1 -0.8 Sph O,Mg C
Summary • The studies on hypernovae indicate; • Velocity inversion of Fe and O • Dense core • Black hole formation • Jet-induced explosions satisfy the above condition! • Blow up heavy isotopes (e.g., Fe, Zn) to the surface. • A black hole grows, with an energetic explosion. • Possible site of gravitational wave emission? • Depending on angular momentum, HNe may be able to be detected more easily than normal SNe. • MBH efficiency of the jets (e.g., rotation?) • MBH ( inefficient Jets) LOpt • MBH Abundances (e.g., MBH [S/Si], [O/C] )