160 likes | 171 Views
This study delves into the mean-variance portfolio selection for a non-life insurance company, focusing on mathematical concepts, construction of the wealth process, and formulating and solving optimization problems. It covers stochastic processes, wealth accumulation in risky assets, aggregated claim amounts, and premium rates for insurance. The text also discusses expected value, variance as a risk measure, and formulating the problem to optimize variance at a specified target. Solutions found through optimal strategies are highlighted, along with a verification theorem.
E N D
Mean- VariancePortfolioSelection for a Non- life insurance Company Łukasz Delong, Russell Gerrard Agata Kłeczek, Prague 29.03.2012
Plan • Mathematicalconcepts • Construction of thewealthprocess • Formulation of the problem • Solutions of theoptimization problem Agata Kłeczek, Prague 29.03.2012
Stochasticprocess Agata Kłeczek, Prague 29.03.2012
WealthProcess X(t) • Amount of the wealth investedin the risky asset 2. Aggregated claim amount 3. Premium rate Agata Kłeczek, Prague 29.03.2012
Amount of thewealthinvestedintheriskyasset • Amount of moneyinvested in the stockon therisky market = π • We canearnorlosemoneybuyingstocks Agata Kłeczek, Prague 29.03.2012
Aggregated claim amountpaid upto time t • number of claims 1,2,3,…,N(t) • value of i-thclaim • Insurerisobliged to pay until time t Agata Kłeczek, Prague 29.03.2012
Premium rate • How much must we pay for insurance if we buy: motor, property insurance? For example: • 1$ - insurer will go bankrupt • 1000$ - nobodybuys insurance Agata Kłeczek, Prague 29.03.2012
Summarize Wealthprocess (t)= +moneyinvestedinriskyasset + allpremiumrate - Aggregatedclaimamount Agata Kłeczek, Prague 29.03.2012
Formulation of the problem • Expectedvalue • Variance • Problem formulation Agata Kłeczek, Prague 29.03.2012
Expectedvalue • Theweightedaverage of possiblevaluethatthis random variablecantake on • EX=100*0,1+200*0,3 300*0,2+500*0,3 1000*0,1 =380 Agata Kłeczek, Prague 29.03.2012
Variance • Thesimplestriskmeasure • How far do valuesliefromtheexpectedvalue? • Var(X)=E (X-EX)^2=61600 • Squareroot of Var(X)= 248,19 Agata Kłeczek, Prague 29.03.2012
For example Agata Kłeczek, Prague 29.03.2012
Problem formulation • Minimalize variance at terminal time T • Expected value should be equal to the value which we assumed to get at terminal time T where P is a specified target Agata Kłeczek, Prague 29.03.2012
Solution of optimizationproblems • We canfind an optimal strategy • Optimalstrategyexists and itisuniqe • Verificationtheorem Agata Kłeczek, Prague 8.03.2012
Theend Agata Kłeczek, Prague 29.03.2012