210 likes | 361 Views
Derivatives. 2.1 – 2.4. 0 of 16. is. 0 2cot(2x) sec 2 (2x) 2sec 2 (2x) Nonexistant. 0 of 16. is. 0 10x 3 - 15x 10x 4 + 15x 2 10x 4 – 15x 2 -10x 4 + 15x 2. 0 of 16.
E N D
Derivatives 2.1 – 2.4 0 of 16
is • 0 • 2cot(2x) • sec2(2x) • 2sec2(2x) • Nonexistant 0 of 16
is • 0 • 10x3 - 15x • 10x4 + 15x2 • 10x4 – 15x2 • -10x4 + 15x2 0 of 16
Find the derivative of the function y = 4/x3 • -4x2 • -12/x2 • 12/x2 • 12/x4 • -12/x4 0 of 16
Find the second derivative of f(x) if f(x)=(2x+3)4 • 4(2x+3)3 • 8(2x+3)3 • 12(2x+3)2 • 24(2x+3)2 • 48(2x+3)2 0 of 16
Find y’ for y=4sin2(3x) • 8sin(3x) • 24sin(3x) • 8sin(3x)cos(3x) • 12sin(3x)cos(3x) • 24sin(3x)cos(3x) 0 of 16
If then f’(0) =? • -2 • 0 • 1 • √2/2 • √2 0 of 16
If y = (2x2 + 1)4, then y’ = • 16x3 • 4(2x2 + 1)3 • 4x(2x2 + 1)3 • 16(2x2 + 1)3 • 16x(2x2 + 1)3 0 of 16
If f(x) = (2+3x)4then the fourth derivative of f is • 0 • 4!(3) • 4!(34) • 4!(35) • 4!(2+3x) 0 of 16
The derivative of (4x)3∙(2x)6 is • 72x8 • 124x17 • 30x(4x)2(2x)5 • 72x(4x)2(2x)5 • 144(4x)2(2x)5 0 of 16
The equation of the tangent line to the graph of y = cos(x) + tan(2x) at the point (0, 1) is: • y = 0 • y = 2x + 1 • y = 2x • y = 2x - 1 • y = x + 1 0 of 16
If then f’(x) = • 1 • 2 • 3 • 4 • 5 0 of 16
If f(x) = 3 + |x-2|, then f’(2) = • -1 • 1 • 2 • 3 • None of the These 0 of 16 * Remember an absolute value is a piecewise function
If , then = • -1 • 0 0 of 16
If then f’(1) = • ½ • 1 • 2 • 3 • Nonexistant 0 of 16
What is the 20th derivative of y = sin(2x) • -220sin(2x) • 220sin(2x) • -1219cos(2x) • 220cos(2x) • 221cos(2x) 0 of 16
What is the equation of the line tangent to the graph of f(x) = 7x – x2at the point where f’(x) = 3? • y = 5x - 10 • y = 3x + 4 • y = 3x + 8 • y = 3x - 10 • y = 3x - 16 0 of 16
If the nth derivative of y is denoted by y(n) and y = -sin(x), then y(7) is the same as: • y • y’ • y’’ • y’’’ • None of These 0 of 16
The equation of the line tangent to the curve at x = 2 is y = x+4. What is the value of k? • -3 • -1 • 1 • 3 • 4 0 of 16
At the point of intersection of f(x) = cos(x) and g(x) = 1 – x2, the tangent lines are • The same line • Parallel lines • Perpendicular Lines • Intersecting but not perpendicular • None of the Above 0 of 16