360 likes | 538 Views
Kinetics Topic 6. Rate of reactions can be fast or slow defined as the change in [concentration] of the reactants or products per time concentration of reactants decreases over time [reactants]/time concentration of products increase over time [products]/time
E N D
Rate of reactions • can be fast or slow • defined as the change in [concentration] of the reactants or products per time • concentration of reactants decreases over time • [reactants]/time • concentration of products increase over time • [products]/time • normally measure in Molarity per sec (M/s) • will continue until reaches equilibrium or one of the reactants is used up
Experiments for measuring rate of reactions • over time, could measure the change of: • for gaseous reactions • mass would go down as gas escapes • volume would increase at constant temp. and pressure • pressure would increase at constant temp. and volume • change in pH if acids and bases are involved • change in temperature • change in electrical conductivity • if produces ions in solution, conductivity will increase • using a spectrometer to detect color changes
Analyzing data from rate experiments (Concentration, Volume, and Mass) • usually involves a graph of properties over time • usually a curve, and the reaction rate is determined from the slope of the line at a time (also known as a tangent) • reaction rates tend to slow with time as reactants are converted to products
reaction slows down with time because the Concentration of the reactants decreases “rise over run” .040M/200s = .0002M/s .025M/400s = .000063M/s Example C4H9Cl(aq) + H2O(l) C4H9OH(aq) + HCl(aq)
the change in concentration of a reactant or product per unit of time • [ ] refer to the concentration of the reactants or products
2NO2(g) 2NO(g) + O2(g) product [NO2] t [NO2] product t reactant
gas is being released in the reaction so Massdecreases over time reaction is creating gas so Volume increases over time
Kinetic theory (6.2.1) • the average energy of particles is proportional to the temperature (Kelvin or Celsius) • all particles have same energy if the same temperature • ex. 4He 20Ne 40Ar • would all have the same temp. and energy • however, lighter particles (4He) would have greatest speed than larger particles given the same energy
Activation Energy Ea(6.2.2) • a minimum amount of energy required for reaction to occur • bonds need to be broken first • the molecules must posses sufficient energy to get over the activation energy barrier.
Collision theory (Topic 6.2) • in order for particles to react • particles must collide • must collide in the correct orientation/angle • must collide with enough kinetic energy to overcome the activation energy (E > Ea) • if the previous conditions are “enough”, particles can overcome the activation energy and reaction will occur • meaning the bonds holding the reactants together will be broken and the reaction can take place
Factors That Affect Reaction Rates • any factor that increases the frequency of collisions or increases the energy with which particles collide will make the reaction go faster: • temperature • pressure (gas only) • surface area • concentration • catalysts
1. Temperature • increase temp • increases number of collisions per unit time • reaction rate approximately doubles for each 10oC or K rise in temperature • increases energy of the collisions • greater chance E > Ea • will not “help with” geometry
2. Pressure • only for gasses • reducing volume while keeping temp constant increases the reaction rate • forcing them together will increase number of collisions per unit time • will not “help with” geometry and energy
3. Surface area • smaller particles have more surface area and will increase the reaction rate • more collisions per unit time • will not “help with” geometry and energy
4. Concentration • increasing concentration will increase the reaction rate by increasing more collisions per unit time • will not “help with” geometry and energy
5. Catalysts • lowers the activation energy (Ea) for the reaction • provide an alternate reaction (rxn) pathway • increase the rate of a reaction • are not used up or chemically changed in the reaction
another way to look at how many particles can react • area under the curve shows the number of gas particles • the # of particles remains constant • not all gas particles have the same energy • only some gas particles (blue area) have enough energy to react
the area under the curve remains the same because the number of particles doesn't change • higher temps. shifts the curve to the right (therefore, the peek must be lower) resulting in an increase in collision frequency and thus more successful collisions
Never move the new activation energy to the left of the peak. Catalysts don’t help out that much!