1 / 35

Kinetics Topic 6

Kinetics Topic 6. Rate of reactions can be fast or slow defined as the change in [concentration] of the reactants or products per time concentration of reactants decreases over time [reactants]/time concentration of products increase over time [products]/time

Download Presentation

Kinetics Topic 6

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. KineticsTopic 6

  2. Rate of reactions • can be fast or slow • defined as the change in [concentration] of the reactants or products per time • concentration of reactants decreases over time • [reactants]/time • concentration of products increase over time • [products]/time • normally measure in Molarity per sec (M/s) • will continue until reaches equilibrium or one of the reactants is used up

  3. (reactants)

  4. Experiments for measuring rate of reactions • over time, could measure the change of: • for gaseous reactions • mass would go down as gas escapes • volume would increase at constant temp. and pressure • pressure would increase at constant temp. and volume • change in pH if acids and bases are involved • change in temperature • change in electrical conductivity • if produces ions in solution, conductivity will increase • using a spectrometer to detect color changes

  5. Analyzing data from rate experiments (Concentration, Volume, and Mass) • usually involves a graph of properties over time • usually a curve, and the reaction rate is determined from the slope of the line at a time (also known as a tangent) • reaction rates tend to slow with time as reactants are converted to products

  6. reaction slows down with time because the Concentration of the reactants decreases “rise over run” .040M/200s = .0002M/s .025M/400s = .000063M/s Example C4H9Cl(aq) + H2O(l) C4H9OH(aq) + HCl(aq)

  7. the change in concentration of a reactant or product per unit of time • [ ] refer to the concentration of the reactants or products

  8. 2NO2(g)  2NO(g) + O2(g) product [NO2] t [NO2] product t reactant

  9. gas is being released in the reaction so Massdecreases over time reaction is creating gas so Volume increases over time

  10. Kinetic theory (6.2.1) • the average energy of particles is proportional to the temperature (Kelvin or Celsius) • all particles have same energy if the same temperature • ex. 4He 20Ne 40Ar • would all have the same temp. and energy • however, lighter particles (4He) would have greatest speed than larger particles given the same energy

  11. Activation Energy Ea(6.2.2) • a minimum amount of energy required for reaction to occur • bonds need to be broken first • the molecules must posses sufficient energy to get over the activation energy barrier.

  12. Collision theory (Topic 6.2) • in order for particles to react • particles must collide • must collide in the correct orientation/angle • must collide with enough kinetic energy to overcome the activation energy (E > Ea) • if the previous conditions are “enough”, particles can overcome the activation energy and reaction will occur • meaning the bonds holding the reactants together will be broken and the reaction can take place

  13. http://phet.colorado.edu/en/simulation/reactions-and-rates

  14. Factors That Affect Reaction Rates • any factor that increases the frequency of collisions or increases the energy with which particles collide will make the reaction go faster: • temperature • pressure (gas only) • surface area • concentration • catalysts

  15. 1. Temperature • increase temp • increases number of collisions per unit time • reaction rate approximately doubles for each 10oC or K rise in temperature • increases energy of the collisions • greater chance E > Ea • will not “help with” geometry

  16. 2. Pressure • only for gasses • reducing volume while keeping temp constant increases the reaction rate • forcing them together will increase number of collisions per unit time • will not “help with” geometry and energy

  17. 3. Surface area • smaller particles have more surface area and will increase the reaction rate • more collisions per unit time • will not “help with” geometry and energy

  18. 4. Concentration • increasing concentration will increase the reaction rate by increasing more collisions per unit time • will not “help with” geometry and energy

  19. 5. Catalysts • lowers the activation energy (Ea) for the reaction • provide an alternate reaction (rxn) pathway • increase the rate of a reaction • are not used up or chemically changed in the reaction

  20. Maxwell–Boltzmanenergy distribution curve (6.2.5)

  21. another way to look at how many particles can react • area under the curve shows the number of gas particles • the # of particles remains constant • not all gas particles have the same energy • only some gas particles (blue area) have enough energy to react

  22. The affect of temperature

  23. the area under the curve remains the same because the number of particles doesn't change • higher temps. shifts the curve to the right (therefore, the peek must be lower) resulting in an increase in collision frequency and thus more successful collisions

  24. The affect of a catalyst

  25. Never move the new activation energy to the left of the peak. Catalysts don’t help out that much!

More Related