1 / 38

Unraveling DNA & Protein Synthesis: Discoveries and Structures

Explore the fascinating journey of DNA discovery, from Griffith to Hershey-Chase, and delve into the intricate structure of DNA and RNA, plus the essential process of protein synthesis.

arturosmith
Download Presentation

Unraveling DNA & Protein Synthesis: Discoveries and Structures

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chapter 10 DNA, RNA, and Protein Synthesis Table of Contents Section 1 Discovery of DNA Section 2 DNA Structure Section 3 DNA Replication Section 4 Protein Synthesis

  2. Section 1 Discovery of DNA Chapter 10 Objectives • Relate how Griffith’s bacterial experiments showed that a hereditary factor was involved in transformation. • Summarize how Avery’s experiments led his group to conclude that DNA is responsible for transformation in bacteria. • Describe how Hershey and Chase’s experiment led to the conclusion that DNA, not protein, is the hereditary molecule in viruses.

  3. Section 1 Discovery of DNA Chapter 10 Griffith’s Experiments • Griffith’s experiments showed that hereditary material can pass from one bacterial cell to another. • The transfer of genetic material from one cell to another cell or from one organism to another organism is calledtransformation.

  4. Section 1 Discovery of DNA Chapter 10 Griffith’s Discovery of Transformation

  5. Section 1 Discovery of DNA Chapter 10 Avery’s Experiments • Avery’s work showed that DNA is the hereditary material that transfers information between bacterial cells.

  6. Section 1 Discovery of DNA Chapter 10 Hershey-Chase Experiment • Hershey and Chase confirmed that DNA, and not protein, is the hereditary material.

  7. Section 1 Discovery of DNA Chapter 10 The Hershey-Chase Experiment

  8. Section 2 DNA Structure Chapter 10 Objectives • Evaluatethe contributions of Franklin and Wilkins in helping Watson and Crick discover DNA’s double helix structure. • Describethe three parts of a nucleotide. • Summarizethe role of covalent and hydrogen bonds in the structure of DNA. • Relatethe role of the base-pairing rules to the structure of DNA.

  9. Section 2 DNA Structure Chapter 10 DNA Double Helix • Watson and Crick created a model of DNA by using Franklin’s and Wilkins’s DNA diffraction X-rays.

  10. Section 2 DNA Structure Chapter 10 DNA Nucleotides • DNA is made of two nucleotide strands that wrap around each other in the shape of a double helix.

  11. Section 2 DNA Structure Chapter 10 DNA Nucleotides, continued • A DNA nucleotide is made of a 5-carbon deoxyribose sugar, a phosphate group, and one of four nitrogenous bases: adenine (A), guanine (G), cytosine (C), or thymine (T).

  12. Section 2 DNA Structure Chapter 10 Structure of a Nucleotide

  13. Section 2 DNA Structure Chapter 10 DNA Nucleotides, continued • Bonds Hold DNA Together • Nucleotides along each DNA strand are linked by covalent bonds. • Complementary nitrogenous bases are bonded by hydrogen bonds.

  14. Section 2 DNA Structure Chapter 10 Complementary Bases • Hydrogen bonding between the complementary base pairs, G-C and A-T, holds the two strands of a DNA molecule together.

  15. Section 2 DNA Structure Chapter 10 Complementary Base Pairing

  16. Section 3 DNA Replication Chapter 10 Objectives • Summarize the process of DNA replication. • Identifythe role of enzymes in the replication of DNA. • Describehow complementary base pairing guides DNA replication. • Comparethe number of replication forks in prokaryotic and eukaryotic cells during DNA replication. • Describe how errors are corrected during DNA replication.

  17. Section 3 DNA Replication Chapter 10 How DNA Replication Occurs • DNA replicationis the process by which DNA is copied in a cell before a cell divides.

  18. Section 3 DNA Replication Chapter 10 How DNA Replication Occurs, continued • Steps of DNA Replication • Replication begins with the separation of the DNA strands by helicases. • Then, DNA polymerases form new strands by adding complementary nucleotides to each of the original strands.

  19. Section 3 DNA Replication Chapter 10 DNA Replication

  20. Section 3 DNA Replication Chapter 10 How DNA Replication Occurs, continued • Each new DNA molecule is made of one strand of nucleotides from the original DNA molecule and one new strand. This is called semi-conservative replication.

  21. Section 3 DNA Replication Chapter 10 Replication Forks Increase the Speed of Replication

  22. Section 3 DNA Replication Chapter 10 DNA Errors in Replication • Changes in DNA are calledmutations. • DNA proofreading and repair prevent many replication errors.

  23. Section 3 DNA Replication Chapter 10 DNA Errors in Replication, continued • DNA Replication and Cancer • Unrepaired mutations that affect genes that control cell division can cause diseases such as cancer.

  24. Section 4 Protein Synthesis Chapter 10 Objectives • Outline the flow of genetic information in cells from DNA to protein. • Compare the structure of RNA with that of DNA. • Describethe importance of the genetic code. • Compare the role of mRNA, rRNA,and tRNA in translation. • Identifythe importance of learning about the human genome.

  25. Section 4 Protein Synthesis Chapter 10 Flow of Genetic Information • The flow of genetic information can be symbolized as DNA RNA protein.

  26. Section 4 Protein Synthesis Chapter 10 RNA Structure and Function • RNA has the sugar ribose instead of deoxyribose and uracil in place of thymine. • RNA is single stranded and is shorter than DNA.

  27. Section 4 Protein Synthesis Chapter 10 RNA Structure and Function, continued • Types of RNA • Cells have three major types of RNA: • messenger RNA(mRNA) • ribosomal RNA (rRNA) • transfer RNA (tRNA)

  28. Section 4 Protein Synthesis Chapter 10 RNA Structure and Function, continued • mRNA carries the genetic “message” from the nucleus to the cytosol. • rRNA is the major component of ribosomes. • tRNA carries specific amino acids, helping to form polypeptides.

  29. Section 4 Protein Synthesis Chapter 10 Transcription • During transcription, DNA acts as a template for directing the synthesis of RNA.

  30. Section 4 Protein Synthesis Chapter 10 Transcription

  31. Section 4 Protein Synthesis Chapter 10 Genetic Code • The nearly universal genetic code identifies the specific amino acids coded for by each three-nucleotide mRNA codon.

  32. Section 4 Protein Synthesis Chapter 10 Translation • Steps of Translation • During translation, amino acids are assembled from information encoded in mRNA. • As the mRNA codons move through the ribosome, tRNAs add specific amino acids to the growing polypeptide chain. • The process continues until a stop codon is reached and the newly made protein is released.

  33. Section 4 Protein Synthesis Chapter 10 Translation: Assembling Proteins

  34. Section 4 Protein Synthesis Chapter 10 Translation: Assembling Proteins, continued

  35. Section 4 Protein Synthesis Chapter 10 The Human Genome • The entire gene sequence of the human genome, the complete genetic content, is now known. • To learn where and when human cells use each of the proteins coded for in the approximately 30,000 genes in the human genome will take much more analysis.

  36. Section 2 DNA Structure Chapter 10 DNA Nucleotides

  37. Section 4 Protein Synthesis Chapter 10 RNA Structure and Function

  38. Section 4 Protein Synthesis Chapter 10 Genetic Code

More Related