1 / 15

gozerog

http://www.gozerog.com. Announcements. CAPA Set #7 due Friday at 10 pm This week in Section  Assignment 4: Circular Motion & Gravity Finish reading all sections of Chapter 5 Advanced reminder  Exam #2 on Tuesday, October 11 See next slide for details Reminder about office hours …

arty
Download Presentation

gozerog

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. http://www.gozerog.com

  2. Announcements • CAPA Set #7 due Friday at 10 pm • This week in Section  • Assignment 4: Circular Motion & Gravity • Finish reading all sections of Chapter 5 • Advanced reminder  Exam #2 on Tuesday, October 11 • See next slide for details • Reminder about office hours … • Nagle (Monday 2-3 in office, Wednesday 1:45-3:45 pm help room) • Kinney (Thursday 4-5 pm help room) • Uzdensky (Tuesday 11am-noon help room)

  3. Exam #2 Information This information also on the course web page under “exam info”. Tuesday, October 11 starting at 7:30 pm sharp. Covers all material to date including: - CAPA Sets 1-7 (emphasis 4-7) - Textbook Chapters 1-5 (emphasis 3-5) - Lectures including up to October 5th - All Labs and Section Assignments including this week Practice exam and version with solutions available via CULearn. Equation Sheet (2 pages) posted on web page. Copy will be included with your exam (no reason to print a copy). Exam room assignments same as last time, and posted on “exam info” page.

  4. Room Frequency BA Clicker Question You are on the surface of the earth, and jump up for a second. The earth exerts a gravitational force on you Fearth, and you exert a gravitational force on the earth Fperson. Which is correct about the accelerations of you and the earth? A) aearth> aperson B) aearth< aperson C) aearth= aperson D) It’s not so simple, we need more information.

  5. Consider the force of gravity exerted by the Earth’s mass M on a person of mass m on its surface? RE Can use this to measure the mass of the Earth if one knows the radius RE.

  6. Eratosthenes (276–194 BC) estimated Earth’s circumference around 240 BC. He had heard that in Syene the Sun was directly overhead at the summer solstice whereas in Alexandria it still cast a shadow. Using the differing angles the shadows made as the basis of his trigonometric calculations he estimated a circumference of around 250,000 stades. Eratosthenes used rough estimates and round numbers, but depending on the length of the stadion , his result is within a margin of between 2% and 20% of the actual meridional circumference, 40,008 kilometers (24,860 miles). Radius = Circumference/2p ~ 6300 km. http://en.wikipedia.org/wiki/Spherical_Earth

  7. International Space Station (ISS) Circular orbit with altitude between 278 km and 460 km. Average speed 27,000 km/hour and 15.7 orbits per day. Astronauts experience “weightlessness”.

  8. Room Frequency BA Clicker Question Astronauts aboard the International Space Station float around, experiencing weightlessness. Why is this? The force of gravity from the earth is zero on the Space Station The force of gravity is much, much weaker on the Space Station The Space Station has the “inertial dampers” turned on. The Space Station is in circular orbit around the earth. The Space Station generates an anti-gravity field.

  9. Gravity at the surface of the earth Gravity at the Space Station Orbit above the earth h ~ 300 km = 3 x 105 meters. Gravitational acceleration is a little weaker, but not so much.

  10. Satellites and “Weightlessness” Satellites are routinely put into orbit around the Earth. The tangential speed must be high enough so that the satellite does not return to Earth, and not so high that it escapes Earth’s gravity altogether. The satellite is kept in orbit by its speed – it is continually falling, but the Earth curves from underneath it. Because of its continual falling, it is considered to be “weightless”.

  11. “Weightlessness” and “Free Fall”? a=0 N If the person were on a scale, it would read their regular weight. -mg

  12. “Weightlessness” and “Free Fall”? -a (controlled fall) N If the person were on a scale, it would read less than their regular weight. -mg

  13. “Weightlessness” and “Free Fall”? -g (free fall) Therefore, when gravity alone is operating unopposed by another force (e.g., normal force), the object is said to be weightless. The object is also said to be in free fall. N Weightless! If the person were on a scale, it would read zero. -mg

  14. Room Frequency BA Clicker Question What happens to a person’s “weight” compared to on earth as measured on a scale on the shuttle at t=100 seconds? Stays the same Increases Decreases

More Related