1 / 63

Chapter 14

Chapter 14. The Arthropods: Blueprint for Success. Evolutionary Perspective. Metamerism modified by tagmatization Chitinous exoskeleton Paired, jointed appendages Ecdysis Ventral nervous system Coelom reduced to cavity around gonads Open circulatory system Complete digestive tract

arva
Download Presentation

Chapter 14

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chapter 14 The Arthropods: Blueprint for Success

  2. Evolutionary Perspective • Metamerism modified by tagmatization • Chitinous exoskeleton • Paired, jointed appendages • Ecdysis • Ventral nervous system • Coelom reduced to cavity around gonads • Open circulatory system • Complete digestive tract • Metamorphosis often present

  3. Classification and Relationships to other Animals • Ecdysozoans • Cuticle, ecdysis, loss of epidermal cilia (figure 14.2) • Monophyletic with five subphyla (table 14.1) • Chelicerata, Crustacea, Hexapoda, Myriapoda, Trilobitomorpha (entirely extinct)

  4. Figure 14.2 Evolutionary relationships of the arthropods to other animals.

  5. Table 14.1

  6. Metamerism and Tagmatization • Metamerism evident externally • Segmental body wall • Segmental appendages • Metamerism reduced internally • No septa • Most organs are not metameric • Tagmatization obvious • Specializations for feeding, sensory perception, locomotion, and visceral functions

  7. Learning Outcomes: Section 14.3 • Describe the structure of the arthropod exoskeleton or cuticle. • Assess the influence the exoskeleton has had on the evolution of the arthropods.

  8. The Exoskeleton • Exoskeleton or cuticle • External jointed skeleton • Functions • Structural support • Protection • Prevents water loss • Levers for muscle attachment and movement • Covers all body surfaces and invaginations • Secreted by epidermis (hypodermis)

  9. The Exoskeleton • Epicuticle (figure 14.3) • Lipoprotein • Impermeable to water • Barrier to microorganisms and pesticides • Procuticle • Chitin • polysaccharide • Outer procuticle hardened by sclerotization or deposition of calcium carbonate • Inner procuticle less hardened and flexible • Articular membranes at joints (figure 14.4) • Modifications include sensory receptors • Sensilla

  10. Figure 14.3 Arthropod exoskeleton.

  11. Figure 14.4 Modifications of the exoskeleton.

  12. The Exoskeleton • Growth accompanied by ecdysis (figure 14.5) • Enzymes from hypodermal glands begin digesting old procuticle (a, b). • New procuticle and epicuticle secreted (c, d). • Old exoskeleton splits (e) • Calcium carbonate deposition and/or sclerotization hardens new exoskeleton (f).

  13. Figure 14.5 Events of ecdysis.

  14. The Hemocoel • Embryonic blastocoel • Internal cavity for open circulatory system • Fluids bathe internal organs. • Exchange of nutrients, wastes, and sometimes gases • Not a hydrostatic compartment

  15. Metamorphosis • Radical change in body form and physiology as an immature (larva) becomes an adult. • Reduces competition between adult and immature stages

  16. Subphylum Trilobitomorpha • Dominant life form from Cambrian period (600 mya) to Carboniferous period (345 mya) • Substrate feeders • Three tagmata: head, thorax, and pygidium • Three longitudinal sections • Biramous appendages

  17. Figure 14.6 Subphylum Trilobitomorpha (Saukia sp).

  18. Subphylum Chelicerata • Spiders, mites, ticks, horseshoe crabs • Two tagmata • Prosoma • Eyes • Chelicerae • Often chelate • Usually feeding appendages • Pedipalps • Sensory, feeding, locomotion, reproduction • Walking legs • Opisthosoma • Digestive, reproductive, excretory, and respiratory organs

  19. Class Meristomata Figure 14.7 A eurypterid, Euripterus remipes. • Subclasses • Eurypterida • Extinct giant water scorpions (figure 14.7)

  20. Class Meristomata Figure 14.8a Limulus polyphemus. • Subclass Xiphosura • Horseshoe crabs • Limulus (Atlantic Ocean and Gulf of Mexico) • Book gills • Gas exchange between blood and water • Reproduction • Dioecious • External fertilization

  21. Figure 14.8b Ventral view of Limulus.

  22. Class Arachnida • Spiders, mites, ticks, scorpions • Arose from ancient euryptrids • Very early terrestrial groups • 280-400 mya • Exoskeleton was preadaptation for water conservation.

  23. Form and Function • Carnivores • Chelicerae to hold prey or as fangs • Gut • Foregut • Cuticular • Pumping stomach • Hindgut • Cuticular • Water reabsorption • Midgut • Noncuticular • Secretion and absorption

  24. Form and Function • Excretion • Coxal glands • Paired sacs bathed in blood of body sinuses • Homologous to nephridia • Excretory pores at base of posterior appendages • Malpighian tubules • Blind ending diverticula of gut tract • Empty via digestive tract • Uric acid

  25. Form and Function • Gas Exchange • Book lungs • Paired ventral invaginations of body wall • Gas exchange between air and blood across book lung lamellae • Tracheae • Branched, chitin-lined tubes • Open at spiracles along abdomen

  26. Figure 14.9 An arachnid book lung.

  27. Form and Function • Circulation • Open with dorsal contractile vessel • Pumps blood into tissue spaces of hemocoel • Returns to dorsal vessel via ostia • Nervous system • Ventral with fusion of ganglia

  28. Form and Function • Senses • Mechanoreceptors • Modifications of exoskeleton • Sensilla respond to displacement. • Chemical sense • Pores in exoskeleton • Vision • Eyes detect movement and changes in light intensity. Figure 14.10 An arthropod seta (a) and an eye (ocellus) (b).

  29. Form and Function • Reproduction • Dioecious • Indirect sperm transfer • Male deposits spermatophores, which are transferred to the female. • Courtship rituals common • Copulation occurs in spiders via modified pedipalp of male. • Development • Direct

  30. Order Scorpionida • Prosoma • Shieldlike carapace • Opisthosoma • Preabdomen • Postabdomen (“tail” with sting) • Courtship prior to mating • Oviparous, ovoviviparous, or viviparous

  31. Figure 14.11 (a) Hardrurus arizonensis (b) External anatomy. (a) (b)

  32. Order Araneae • Spiders • Prosoma • Chelicerae with poison glands and fangs • Pedipalps leglike • Sperm transfer in males • 6-8 eyes • Opisthosoma • Connected to prosoma via pedicel • Swollen or elongate • Visceral functions and spinnerets

  33. Figure 14.12 External structure of Argiope.

  34. Figure 14.13 Prosoma of a spiderling.

  35. Order Araneae • Silk • Protein • Repeating sequence of glycine and alanine • Beta sheet • Stored as gel prior to spinning • Chemical modification when forced through spinnerets • Webs, line retreats, safety lines, wrapping eggs, dispersal of young (ballooning)

  36. Figure 14.14 Members of the family Araneidae are the orb weavers.

  37. Order Araneae • Feeding • Insects and other arthropods • Hunt or capture in webs • Paralyze prey • May wrap in silk • Inject enzymes into prey body wall • Two spiders are venomous to humans.

  38. Figure 14.15 (a) Black widow spiders (Lactrodectus mactans) has a neurotoxic venom. (b) Brown recluse spiders (Loxosceles reclusa) have a histolytic venom. (b) (a)

  39. Order Araneae • Reproduction • Complex behaviors • Chemical, tactile, and visual signals • Male’s pedipalps enlarged into embolus • Male deposits sperm on web and collects with pedipalps. • Transfers sperm to female during mating • Female deposits eggs in silk case. • In webbing, a retreat, or carries with her

  40. Order Opiliones Figure 14.16 Order Opiliones (Leiobunum sp). • Harvestmen or daddy longlegs • Prosoma broadly joins opisthosoma • Legs long and slender • Omnivores • External and internal digestion

  41. Order Acarina • Mites • Prosoma and opisthosoma fused and covered by single carapace • 1mm or less • Free-living • Herbivores or scavengers • Many pest species • Ectoparasites • Chigger (Trombicula) • Follicle mite (Demodex) Figure 14.17 Dermatophagoides farinae is common in homes and grain storage areas.

  42. Order Acarina • Ticks • Ectoparasites in all life stages • Up to 3cm • Females lay eggs after engorging with blood. • Important in disease transmission • Rocky Mountain spotted fever • Lyme disease

  43. Figure 11.18 Ixodes scapularis transmits the bacteria that causes Lyme disease.

  44. Class Pycnogonida (Subphylum Cheliceriformes?) • Sea spiders • Marine • Feed on cnidarian polyps • Dioecious • Molecular, developmental, and morphological characters are being used to reevaluate taxonomic status. Figure 14.19 Class Pycnogonida

  45. Subphylum Crustacea • Crayfish, shrimp, lobsters, crabs, copepods cladocerans and others • Almost all are aquatic • Terrestrial isopods and crabs are exceptions. • Two pairs of antennae • Biramous appendages (figure 14.20)

  46. Figure 14.20 Crustacean body form. (a) External anatomy. (b) Biramous appendages.

  47. Class Malacostraca • Crabs, lobsters, crayfish, shrimp, krill, amphipods, isopods • Order Decapoda • Largest order • Shrimp, crayfish, lobsters, crabs

  48. Class Malacostraca • Crayfish external structure • Cephalothorax • Fusion of head and thorax • Covered dorsally and laterally by carapace • Sensory, feeding, locomotion • Abdomen • Muscular “tail” in crayfish • Locomotor and visceral functions in others • Paired appendages • Serially homologous (derived from a common ancestral pattern)

  49. Figure 14.22 External structure of a male crayfish.

  50. Figure 14.23 Serial homology of crayfish appendages.

More Related