1 / 40

The Maximum Principle and Hamilton-Jacobi Theory Optimal Control

The Maximum Principle and Hamilton-Jacobi Theory Optimal Control. Dr. Hatem Elaydi Islamic University of Gaza EE Department Spring 2012 Lecture 5. 4.1 Variational approach with terminal time not fixed. 4.2 Weierstrass -Erdmann Conditions.

arva
Download Presentation

The Maximum Principle and Hamilton-Jacobi Theory Optimal Control

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. The Maximum Principle and Hamilton-Jacobi TheoryOptimal Control Dr. HatemElaydi Islamic University of Gaza EE Department Spring 2012 Lecture 5

  2. 4.1 Variational approach with terminal time not fixed Dr. H. Elaydi, EE Dept, IUG, Spring 2012

  3. Dr. H. Elaydi, EE Dept, IUG, Spring 2012

  4. Dr. H. Elaydi, EE Dept, IUG, Spring 2012

  5. 4.2 Weierstrass-Erdmann Conditions Dr. H. Elaydi, EE Dept, IUG, Spring 2012

  6. Dr. H. Elaydi, EE Dept, IUG, Spring 2012

  7. Dr. H. Elaydi, EE Dept, IUG, Spring 2012

  8. Dr. H. Elaydi, EE Dept, IUG, Spring 2012

  9. Dr. H. Elaydi, EE Dept, IUG, Spring 2012

  10. Dr. H. Elaydi, EE Dept, IUG, Spring 2012

  11. 4.3 The Bolza Problem – No Inequality Constraints Dr. H. Elaydi, EE Dept, IUG, Spring 2012

  12. 4.3.1 Continuous optimal control problem – fixed beginning and terminal times – no inequality constraints Dr. H. Elaydi, EE Dept, IUG, Spring 2012

  13. Dr. H. Elaydi, EE Dept, IUG, Spring 2012

  14. Dr. H. Elaydi, EE Dept, IUG, Spring 2012

  15. Dr. H. Elaydi, EE Dept, IUG, Spring 2012

  16. Dr. H. Elaydi, EE Dept, IUG, Spring 2012

  17. Dr. H. Elaydi, EE Dept, IUG, Spring 2012

  18. Dr. H. Elaydi, EE Dept, IUG, Spring 2012

  19. Example 4.3.1 Dr. H. Elaydi, EE Dept, IUG, Spring 2012

  20. Dr. H. Elaydi, EE Dept, IUG, Spring 2012

  21. Dr. H. Elaydi, EE Dept, IUG, Spring 2012

  22. 4.3.2 COCP - fixed beginning & unspecified terminal times - no inequality constraints Dr. H. Elaydi, EE Dept, IUG, Spring 2012

  23. Dr. H. Elaydi, EE Dept, IUG, Spring 2012

  24. Dr. H. Elaydi, EE Dept, IUG, Spring 2012

  25. Dr. H. Elaydi, EE Dept, IUG, Spring 2012

  26. Dr. H. Elaydi, EE Dept, IUG, Spring 2012

  27. Dr. H. Elaydi, EE Dept, IUG, Spring 2012

  28. Dr. H. Elaydi, EE Dept, IUG, Spring 2012

  29. 4.4 The Bolza problem with inequality constraints • 4.4.1 The maximum principle with control variable inequality constraints Dr. H. Elaydi, EE Dept, IUG, Spring 2012

  30. Dr. H. Elaydi, EE Dept, IUG, Spring 2012

  31. Dr. H. Elaydi, EE Dept, IUG, Spring 2012

  32. Dr. H. Elaydi, EE Dept, IUG, Spring 2012

  33. Dr. H. Elaydi, EE Dept, IUG, Spring 2012

  34. Dr. H. Elaydi, EE Dept, IUG, Spring 2012

  35. Dr. H. Elaydi, EE Dept, IUG, Spring 2012

  36. Dr. H. Elaydi, EE Dept, IUG, Spring 2012

  37. Dr. H. Elaydi, EE Dept, IUG, Spring 2012

  38. Dr. H. Elaydi, EE Dept, IUG, Spring 2012

  39. Dr. H. Elaydi, EE Dept, IUG, Spring 2012

  40. Dr. H. Elaydi, EE Dept, IUG, Spring 2012

More Related