180 likes | 258 Views
Getting Precise Stellar Parameters in PLATO’s first field. PLATO science conference 24/25 th Feb 2011. T. Granzer, K.G. Strassmeier, & M. Weber. A dedicated input catalog?. Dedicated photometric characterization survey in Strömgren uvby n w and H
E N D
Getting Precise Stellar Parameters in PLATO’s first field PLATO science conference 24/25th Feb 2011 T. Granzer, K.G. Strassmeier, & M. Weber
A dedicated input catalog? • Dedicated photometric characterization survey in Strömgren uvbynw and H • Deliverables: (b-y), c1, m1, Teff, [M/H], log g; Flux F(H) down to 13mag. • Constraints: bright limit 9.5, faint 16mag • First field (fixed) in southern hemisphere • Challenge: 2000 □2
Challenge: 2000 sq-deg • Super Wasp-South (SAAO), 8x11.1cm lens optics, FoV 7.8x7.8º,~35 pointings, filters ‘on demand’ (?) • OmegaCam@VST (Paranal): 2.6m Ritchey-Crétien, FoV 1x1º,~2000 pointings, ugriz&H • RoboTel (C. Armazones): 80cm, Cassegrain, 33.5 arcmin, ~7500 pts., full Strömgren and H set (plus UBVRI, ugriz). • RoboTel (C. Armazones): 80cm, Cassegrain, 33.5 arcmin, ~7500 pts., full Strömgren and H set (plus UBVRI, ugriz).
LBT Mt.Graham 5min, seeing 0.8“ B-band NGC 891 RoboTel in Potsdam 20min, seeing 3.3“ V-band
Identical Instrumenton STELLA-1,1.2m, Izaña • 40 sec, on 5.8.2010 • 1.3´´ seeing 10´´ 1´´
Bochum-University/Antofagasta Observatory at base of Cerro Armazones ~50% seeing < 1” ~350 clear nights Image: R. Chini
Strömgren indices (b-y) for eff. Temperature m1=(v-b)-(b-y) for line blanketing c1=(u-v)-(v-b) for Balmer discontinuity For late-type (FGKM) stars (dwarfs), m1 is a good proxy for metallicity, c1 for log(g) The calibrations used for error analysis are from: Holmberg et al., A&A 475, 519 Ramirez & Melendez, ApJ 626, 446 Árnadóttir et al., A&A 521, A40
3-year survey? • 1300h/year h>30 • 85% clear nights • Moon: 3-5 days around full moon • Downtime <20% (STELLA) • Standards? (~20min/night) 11-17min/pointing
Photometric precision translates to 13.3-15.8 STELLA-1 (1.2m)! Including slewing/read-out overhead, effective exposuretimes in y are • 10.3-23.7 sec. (8 filters) • 20.1-40.7 sec. (6 filters) • 52.6-97.2 sec. (4 filters) ybv = 3.5-15 mmag, u = 8-30 mmag
…but only in the standard system varies slowly nightly Transformation to account for different filter curves (i, i) and atmospheric conditions (k’i, i) …determined by observation of standard fields, with errors k, , , .
Observe at high and low X (b-y) m1 c1 0.015 0.08 0.12 - 0.05 0.22 k’ 0.007 0.012 0.024 0.009 0.015 0.03 On STELLA-1, two observations in one night, each 20min at X=1.5 and X=1.05 …errors hold only for the standard field!
Reddening? Stromgren indices only in de-reddened form, but Plato field at moderate galactic latitude... Use ß–index, independent of reddening (same ). According to Crawford (AJ 80, 955) …again one notch on your error budget
Results • Error budget dominated by filter transformations (, ) because only two fields measured. Alleviated by slow variation in these coefficients. • Redding only significant in (b-y)
Teff (b-y) ,=0, inst=10mmag std=11.7mmag red=18.8mmag Sample data from Olsen, A&AS 57, 443
Metallicity (b-y,m1,c1) ,=0, inst=17.1mmag std=19.6mmag red=5.6mmag Sample data from Olsen, A&AS 57, 443
log(g) ,=0, inst=21.7mmag std=39.2mmag red=3.8mmag Sample data from Olsen, A&AS 57, 443
Conclusions • Extremely ambitious task. • Success depends on good filter transformation. • Are there enough standards (in the field)? • log(g) at best to distinguish dwarfs and giants. • Sacrifice filters/fields?