160 likes | 273 Views
Alfvén Wave Generation and Dissipation Leading to High-Latitude Aurora. W. Lotko Dartmouth College. A. Streltsov, M. Wiltberger Dartmouth College. Genesis Fate Impact. SM 52B-08. Substorm Onsets. 557.7 nm. 30 Jan 1998. Rankin & Gillam MPA. Rayleighs. 4999. 75. 1657. 549.
E N D
Alfvén Wave Generation and Dissipation Leading to High-Latitude Aurora W. Lotko Dartmouth College A. Streltsov, M. Wiltberger Dartmouth College • Genesis • Fate • Impact SM 52B-08
Substorm Onsets 557.7 nm 30 Jan 1998 Rankin & Gillam MPA Rayleighs 4999 75 1657 549 ILAT 70 182 60 65 20 1 3 5 7 9 11 13 UT, hours VIS Low-Resolution Camera, 557.7 nm Lyons et al. ‘01
10 Jan 1997 Equatorial Noon-Midnight Ex Ex Power at 1.3 mHz in electric field Ex (GSM) from LFM global MHD. Fourier transforms are computed from time interval 0900-1200 UT. Wiltberger et al. ‘02
1 Alfvén Speed Profile Disturbance vz t/mp 0 1 z zmp 1 0 0 0.5 1 vA/vLobe z zmp “Fast Mode” Energy 0 1 z zmp “Alfvénic” Energy 0 6 5 4 3 2 1 0 x/zmp Earthward Earthward Propagation of “Plasma Sheet” Disturbances Fast-Alfvén mode coupling: ky = 1.3 Plasma = 0 ! Characteristics Parameters vLobe = 2600 km/s zmp = 25 RE mp = 1 min Time Step t = 6 mp Allan and Wright ‘00
Kivelson and Southwood ‘86 0.5 Absorption 0 0 1 2 Coupling Parameter, .08 EAT/EFT Ly 15 RE Ly 60 RE 0 0 2 4 6 8 10 t/tmp Coupling Efficiency Allan–Wright Simulation
100 100 1 2/e2 Lph, RE LOBE PSBL .001 0.1 0 5 0 10 1 z/zmp Altitude, RE Phase Mixing, Dispersion and E|| Dispersion Lengths Phase mixing: Lph Ion gyroradius: = i(1+Te/Ti) Inertial Length: e = c/pe Dispersive Alfvén Waves /e E||/E >> 1 Kinetic Phase Mixing Length << 1 Inertial x/zmp = 4, t/tmp = 6 Lysak and Carlson ‘81 Allen and Wright ‘98
= 0.4ci (1 – vc/|v||e|), |v||e| > 0 Low-Altitude Dissipation = 0 Lysak and Dum ‘83 Streltsov et al. ‘01
100 E, mV/m 10 0 5 10 15 Altitude, RE Low-Altitude Intensification Streltsov et al. ‘01
ref inc J|| = K || 100 1 Insulator Reflection Coefficient Absorption, % 0 Conductor d -1 0 10 0.1 1 100 1000 J =PE Wavelength, km Reflection Coefficient vAm 2 RE vAi Lysak and Carlson ‘81 Vogt and Haerendel ’99
100 1 Reflection Coefficient Absorption, % 0 -1 0 10 0.1 1 100 1000 Wavelength, km Knudsen et al. ‘01 Maggs and Davis ‘68 Number of Arcs 100 0.1 1 10 Arc Width, km Alfvén Wave Absorption vs Wavelength Observed Width of Auroral Arcs ?
M-I Interaction North-South Electric Field • Alfvén wave FAC • exceeds current- • carrying capacity • of lower m’sphere • E|| is induced to boost • electron parallel flux • Accelerated electrons • nonuniformly ionize • E-layer • Gradients in induce • quasi-electrostatic, • inertial Alfvén waves • at low altitude • Ionospheric Alfvénic • fluctuations enhance • Joule heating PE2, • ion outflow 2 mho Reactive Ionosphere 5 mho Equator Ionosphere East-West Magnetic Field Lotkoand Streltsov ‘99
Inertial M-I Coupling Ponderomotive Ion Upwelling via Alfvén Waves ap|| = ¼||(E/B0)2 ap|| > ag at 1000 km altitude when E > 200 mV/m Li and Temerin ’93 Strangeway et al. ‘00
Theory Program SUMMARY • Genesis (magnetotail) • CPS compressional disturbances shear Alfvén waves in PSBL • Phase mixing in PSBL gradient creates smaller scale structure • Fate (low-altitude magnetosphere) • Small k Ionospheric penetration, reflection • Moderate k Strong absorption in collisionless E|| layer • Large k Reflection at E|| layer, momentum transfer to electrons • Impact (ionosphere/thermosphere) • Enhanced Joule heating • Electron acceleration, 10-km scale auroral arcs • Ionospheric activation Small-scale resonator Alfvén waves • Ponderomotive lifting of ionospheric ions