20 likes | 117 Views
SynBERC: A center-based approach to the engineering of biology. Research thrusts Parts Genetically encoded entity with basic biological function (e.g., a ribosome binding site, transcription terminator, phosphorylation motif) Devices
E N D
SynBERC: A center-based approach to the engineering of biology • Research thrusts • Parts • Genetically encoded entity with basic biological function (e.g., a ribosome binding site, transcription terminator, phosphorylation motif) • Devices • Collections of parts that perform one or more intended functions (e.g., Boolean logic operation, a feedback control loop, chemical transformation) • Key components include specifying device families; device-device carrier signals; standard experimental methods for device modeling and characterization • Chassis • “Naïve” cellular power supplies and chassis that can be used to sustain the proper operation of a synthetic biological system • Systems engineers focus on system design, and cell engineers focus on the design of cells as power supplies and chassis • Testbeds • Research thrusts are driven in large part by SynBERC’s three science testbeds, which serve to demonstrate the utility of synthetic biology and the tools constructed in our thrusts: • Testbed 1: Construction of a bacterium to swim to a chemical or biological agent and destroy it (e.g. tumor-killing bacterium) • Testbed 2: Microbial synthesis of natural and unnatural organic compounds • Reconstruction of plant alkaloid pathways in microbes • De novo design of biosynthetic pathways • Testbed 3: Development of a bacterium to produce cheap biofuels from biomass Vision SynBERC is a multi-institution research effort to help lay the foundation for synthetic biology. Just as technicians now assemble standardized, off-the-shelf electronic components to build computers, synthetic biologists anticipate the ability to assemble well-characterized biological components into robust host organisms to achieve specific functions. SynBERC aims to provide the tools and techniques to help designers easily and predictably reprogram existing systems, and reduce the prohibitively high costs and long development times of conventional biological approaches. The underlying goal of our research is not just to deliver systems that fulfill these testbed applications, but rather to develop the foundational infrastructure that is needed to make routine the design and construction of any engineered biological system. Investigators Thrust-testbed integration: Tumor-killing bacterium A model project: Tumor-killing bacterium UCB • Web of registries • Based on MIT Registry of Standard Biological Parts (parts.mit.edu) • Well-characterized, community-rated, standard parts • Distributed, coordinated access to banked parts • All parts available to industrial participants MIT community Drew Endy Tom Knight Susan Marqusee Chris Anderson core members Adam Arkin GENETIC PROGRAM x = 0 IF (x==0) EXPRESS serum protectant IF (tumor_signal1) x = 1 IF (x=1 AND tumor_signal2) INVADE EXPRESS therapeutic CHASSIS Septic shock Innate immune response SENSORS Anaerobic Nutrients Bacteria Density CIRCUITS AND gate Ken Oye Carlos Bustamante KristalaJones Prather Randy Rettberg Paul Rabinow Jay Keasling UCSF Harvard PVAMU partners Wendell Lim Michael Gyamerah Raul Cuero George Church Chris Voigt TanjaKortemme • Education & outreach • SynBERC develops modular online curricula and training materials for all student levels • The International Genetically Engineered Machine Competition (iGEM) is the flagship education program of SynBERC. Undergraduate students use and create Registry parts to learn how to design and execute a synthetic biology project over the course of a summer. • Human Practices educates citizens and policymakers about the benefits and threats synthetic biology • SynBERC provides industry-sponsored summer internships in industrial labs, in partnership with QB3 and SynBERC alliance members Social context SynBERC examines synthetic biology within a frame of human practices, with emphasis on ways that economic, political, and cultural forces may condition the development of synthetic biology and on ways that synthetic biology may significantly inform human security, health, and welfare through the new objects that it brings into the world. • Tech transfer & industry • SynBERC emphasizes industrial collaborations and technology transfer through its Industry Alliance Program, which aims to accelerate the commercial use of biology as an engineering science. Industry benefits can include: • Close interaction and joint projects with SynBERC faculty and students • Access to unpublished research results and SynBERC publications • Joint submittal of SBIR/STTR proposals and potential university fund matching • Opportunity to sponsor dedicated research projects with SynBERC Faculty iGEM • Fundamental ModulesPaul Rabinow, UC Berkeley • Fundamental Research on Ethics • Fundamental Research on Ontology and Emergent Objects • Applied ModulesKenneth Oye, MIT • Applied Research on Intellectual Property and the Commons • Applied Research on Security, Health and Environmental Effects www.synberc.org