1 / 32

核物質における超流動への媒質偏極効果

核物質における超流動への媒質偏極効果. 松崎 昌之. PTP 116, 127 (2006). 無限核物質での pairing gap. M.Baldo et al, NPA515, 409 (1990). 弱結合近似( Fermi 面近傍のみが pairing に寄与)による k F 依存性の見積もり. 2 核子の相対運動量 = Fermi 運動量 として自由空間と媒質中の対応をつける. T.Takatsuka and R. Tamagaki, PTP Suppl. 112, 27 (1993). RMF 相互作用による計算. --- 3 倍 !.

Download Presentation

核物質における超流動への媒質偏極効果

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 核物質における超流動への媒質偏極効果 松崎 昌之 PTP 116, 127 (2006)

  2. 無限核物質での pairing gap M.Baldo et al, NPA515, 409 (1990)

  3. 弱結合近似(Fermi 面近傍のみが pairing に寄与)による kF依存性の見積もり 2核子の相対運動量 = Fermi 運動量 として自由空間と媒質中の対応をつける T.Takatsuka and R. Tamagaki, PTP Suppl. 112, 27 (1993)

  4. RMF 相互作用による計算 --- 3 倍 ! Which is reliable ? ----------- bare int. と同程度 H.Kucharek and P.Ring, Z.Phys. A339, 23 (1991)

  5. 松崎、谷川、福岡教育大学紀要 54, no.3, 17 (2005)

  6. ギャップ方程式は短距離相関を 内包している

  7. (松崎、数理科学 39, no.3 (通巻453号), 39 (2001)) F.T. gap が有限で相互作用が斥力芯を持てば波動関数は外へ押し出される

  8. 相対論固有の効果?

  9. Dirac sea effects は 本質的ではない M.M., PRC58, 3407 (1998)

  10. RMF

  11. Form factor at every vertex to modulate high mom. interaction so as to reproduce the result of Bonn-B potential present M.M. and T.Tanigawa, NPA683, 406 (2001)

  12. 差はほぼ座標空間のデルタ関数 ( RMF は有効相互作用)

  13. ここまでで非相対論と同じ土俵に  媒質偏極効果の考察へ

  14. Medium polarization effect on superfluidity Neutron matter reduce pairing gap significantly reduction is weak

  15. Symmetric matter … preliminary enhance pairing gap Finite nuclei enhance pairing gap

  16. Long wavelength density fluctuation Liquid-gas instability

  17. Relativistic approach (σ-ω model)

  18. Thermodynamics at T=0 Liquid-gas instability !

  19. Quantum mechanics 0 calculate meson propagator (q =0)

  20. Nucleon propagator 0 k : pha decomposition --- M.Nakano et al., PRC56, 3287 (1997) xxx xxx xxx : FD decompositon --- standard ( ) ,

  21. (Longitudinal) dielectric function pha FD instability ! instability !

  22. Assume that the system stays in a pure phase.

  23. ill-defined at instability ! Pairing interaction at 1-loop level

  24. (Cross section of dielectric function) free from instability infra-red cutoff is necessary 0.65 is chosen

  25. FD attraction repulsion pha σ,longitudinal-ω:attraction, σ-ωmix: repulsion

  26. FD attraction pha

  27. (instability) (corrected using a form factor at tree (OBE) level)

  28. Summary • Liquid-gas instability occurs at medium density • Medium polarization enhances gap at low and medium density • At high density, FD enhances gap whereas pha reduces gap • Characteristic cancellation among σ,ω, and σ-ωmix • Higher order diagrams • Superfluidity in mixed phase

  29. 斥力による pairing (NL2) 斥力のみ

  30. 高運動量で斥力かつΔ(k)<0  Fermi 面で Δ(kF)>0

  31. Vector meson mass decrease  pairing reduction M.M. and T.Tanigawa, PLB445, 254 (1999)

More Related