630 likes | 770 Views
03/02/10. Locating and Describing Interest Points. Computer Vision CS 543 / ECE 549 University of Illinois Derek Hoiem. Acknowledgment: Many keypoint slides from Grauman&Leibe 2008 AAAI Tutorial. What is “object recognition”?. 1. Identify a Specific Instance. General objects
E N D
03/02/10 Locating and Describing Interest Points Computer Vision CS 543 / ECE 549 University of Illinois Derek Hoiem Acknowledgment: Many keypoint slides from Grauman&Leibe 2008 AAAI Tutorial
1. Identify a Specific Instance • General objects • Challenges: rotation, scale, occlusion, localization • Approaches • Geometric configurations of keypoints (Lowe 2004) • Works well for planar, textured objects
1. Identify a Specific Instance • Faces • Typical scenario: few examples per face, identify or verify test example • What’s hard: changes in expression, lighting, age, occlusion, viewpoint • Basic approaches (all nearest neighbor) • Project into a new subspace (or kernel space) (e.g., “Eigenfaces”=PCA) • Measure face features • Make 3d face model, compare shape+appearance (e.g., AAM)
2. Detect Instance of a Category • Much harder than specific instance recognition • Challenges • Everything in instance recognition • Intraclass variation • Representation becomes crucial
2. Detect Instance of a Category • Template or sliding window • Works well when • Object fits well into rectangular window • Interior features are discriminative Schneiderman Kanade 2000
2. Detect Instance of a Category • Parts-based Fischler and Elschlager 1973 Felzenszwalb et al. 2008
3. Assign a label to a pixel or region • Stuff • Materials, object regions, textures, etc. • Approaches • Label patches + CRF • Segmentation + Label Regions
General Process of Object Recognition Specify Object Model Generate Hypotheses Score Hypotheses Resolution
General Process of Object Recognition Example: Template Matching Specify Object Model Intensity Template, at x-y Scanning window Generate Hypotheses Score Hypotheses Normalized X-Corr Resolution Threshold + Non-max suppression
General Process of Object Recognition Example: Keypoint-based Instance Recognition Specify Object Model A1 A3 B3 A2 Affine-variant point locations Generate Hypotheses Affine Parameters B1 B2 Score Hypotheses # Inliers Resolution Choose hypothesis with max score above threshold
General Process of Object Recognition Example: Keypoint-based Instance Recognition Specify Object Model A1 A3 B3 A2 Generate Hypotheses B1 B2 Today’s Class Score Hypotheses Resolution
Overview of Keypoint Matching 1. Find a set of distinctive key- points 2. Define a region around each keypoint A1 B3 3. Extract and normalize the region content A2 A3 B2 B1 4. Compute a local descriptor from the normalized region 5. Match local descriptors K. Grauman, B. Leibe
Main challenges • Change in position and scale • Change in viewpoint • Occlusion • Articulation
Goals for Keypoints Detect points that are repeatable and distinctive
Key trade-offs B3 A1 A2 A3 B2 B1 Localization More Repeatable More Points Robust to occlusion Works with less texture Robust detection Precise localization Description More Selective More Robust Minimize wrong matches Deal with expected variations Maximize correct matches
Keypoint Localization • Goals: • Repeatable detection • Precise localization • Interesting content K. Grauman, B. Leibe
Choosing interest points • If you wanted to meet a friend would you say • “Let’s meet on campus.” • “Let’s meet on Green street.” • “Let’s meet at Green and Wright.” • Corner detection • Or if you were in a secluded area: • “Let’s meet in the Plains of Akbar.” • “Let’s meet on the side of Mt. Doom.” • “Let’s meet on top of Mt. Doom.” • Blob (valley/peak) detection
Choosing interest points • Corners • “Let’s meet at Green and Wright.” • Peaks/Valleys • “Let’s meet on top of Mt. Doom.”
Many Existing Detectors Available Hessian & Harris [Beaudet ‘78], [Harris ‘88] Laplacian, DoG[Lindeberg ‘98], [Lowe 1999] Harris-/Hessian-Laplace[Mikolajczyk & Schmid ‘01] Harris-/Hessian-Affine [Mikolajczyk & Schmid ‘04] EBR and IBR [Tuytelaars & Van Gool ‘04] MSER[Matas ‘02] Salient Regions [Kadir & Brady ‘01] Others… K. Grauman, B. Leibe
Hessian Detector [Beaudet78] • Hessian determinant Ixx Iyy Ixy Intuition: Search for strongderivatives in two orthogonal directions K. Grauman, B. Leibe
Hessian Detector [Beaudet78] • Hessian determinant Ixx Iyy Ixy In Matlab: K. Grauman, B. Leibe
Hessian Detector – Responses [Beaudet78] Effect: Responses mainly on corners and strongly textured areas.
Harris Detector [Harris88] • Second moment matrix(autocorrelation matrix) Intuition: Search for local neighborhoods where the image content has two main directions (eigenvectors). K. Grauman, B. Leibe
Ix Iy Harris Detector [Harris88] • Second moment matrix(autocorrelation matrix) 1. Image derivatives Iy2 IxIy Ix2 2. Square of derivatives g(IxIy) g(Ix2) g(Iy2) 3. Gaussian filter g(sI) 4. Cornerness function – both eigenvalues are strong g(IxIy) 5. Non-maxima suppression har
Harris Detector – Responses [Harris88] Effect: A very precise corner detector.
Automatic Scale Selection How to find corresponding patch sizes? K. Grauman, B. Leibe
Automatic Scale Selection • Function responses for increasing scale (scale signature) K. Grauman, B. Leibe
Automatic Scale Selection • Function responses for increasing scale (scale signature) K. Grauman, B. Leibe
Automatic Scale Selection • Function responses for increasing scale (scale signature) K. Grauman, B. Leibe
Automatic Scale Selection • Function responses for increasing scale (scale signature) K. Grauman, B. Leibe
Automatic Scale Selection • Function responses for increasing scale (scale signature) K. Grauman, B. Leibe
Automatic Scale Selection • Function responses for increasing scale (scale signature) K. Grauman, B. Leibe
What Is A Useful Signature Function? • Laplacian-of-Gaussian = “blob” detector K. Grauman, B. Leibe
Laplacian-of-Gaussian (LoG) • Local maxima in scale space of Laplacian-of-Gaussian s5 s4 s3 s2 List of(x, y, s) s K. Grauman, B. Leibe
Results: Laplacian-of-Gaussian K. Grauman, B. Leibe
Difference-of-Gaussian (DoG) • Difference of Gaussians as approximation of the Laplacian-of-Gaussian = - K. Grauman, B. Leibe
DoG – Efficient Computation • Computation in Gaussian scale pyramid Sampling withstep s4=2 s s s s Original image K. Grauman, B. Leibe
Results: Lowe’s DoG K. Grauman, B. Leibe
Orientation Normalization p 2 0 • Compute orientation histogram • Select dominant orientation • Normalize: rotate to fixed orientation [Lowe, SIFT, 1999] T. Tuytelaars, B. Leibe
Harris-Laplace [Mikolajczyk ‘01] • Initialization: Multiscale Harris corner detection s4 s3 s2 s Computing Harris function Detecting local maxima
Harris-Laplace [Mikolajczyk ‘01] • Initialization: Multiscale Harris corner detection • Scale selection based on Laplacian(same procedure with Hessian Hessian-Laplace) Harris points Harris-Laplace points K. Grauman, B. Leibe
Maximally Stable Extremal Regions [Matas ‘02] • Based on Watershed segmentation algorithm • Select regions that stay stable over a large parameter range K. Grauman, B. Leibe
Example Results: MSER K. Grauman, B. Leibe
Available at a web site near you… • For most local feature detectors, executables are available online: • http://robots.ox.ac.uk/~vgg/research/affine • http://www.cs.ubc.ca/~lowe/keypoints/ • http://www.vision.ee.ethz.ch/~surf K. Grauman, B. Leibe
Local Descriptors • The ideal descriptor should be • Robust • Distinctive • Compact • Efficient • Most available descriptors focus on edge/gradient information • Capture texture information • Color rarely used K. Grauman, B. Leibe
Local Descriptors: SIFT Descriptor • Histogram of oriented gradients • Captures important texture information • Robust to small translations / affine deformations [Lowe, ICCV 1999] K. Grauman, B. Leibe