1 / 24

Combinational Circuits in Bluespec Arvind Computer Science & Artificial Intelligence Lab

Combinational Circuits in Bluespec Arvind Computer Science & Artificial Intelligence Lab Massachusetts Institute of Technology. Now we call this Guarded Atomic Actions. Bluespec: Two-Level Compilation. Bluespec (Objects, Types, Higher-order functions). Lennart Augustsson

astro
Download Presentation

Combinational Circuits in Bluespec Arvind Computer Science & Artificial Intelligence Lab

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Combinational Circuits in Bluespec Arvind Computer Science & Artificial Intelligence Lab Massachusetts Institute of Technology http://csg.csail.mit.edu/korea

  2. Now we call this Guarded Atomic Actions Bluespec: Two-Level Compilation Bluespec (Objects, Types, Higher-order functions) Lennart Augustsson @Sandburst 2000-2002 • Type checking • Massive partial evaluation and static elaboration Level 1 compilation Rules and Actions (Term Rewriting System) • Rule conflict analysis • Rule scheduling Level 2 synthesis James Hoe & Arvind @MIT 1997-2000 Object code (Verilog/C) http://csg.csail.mit.edu/korea

  3. elaborate w/params Software Toolflow: Hardware Toolflow: source source compile .exe design1 design2 design3 run w/ params run w/ params run1 run run1 run1.1 run1 run1 run2.1 run1 run1 run3.1 run1 run1 … … … … Static Elaboration At compile time • Inline function calls and unroll loops • Instantiate modules with specific parameters • Resolve polymorphism/overloading, perform most data structure operations http://csg.csail.mit.edu/korea

  4. + + Bfly4 in0 out0 Bfly4 - - Permute Bfly4 in1 out1 Bfly4 x16 out2 in2 Bfly4 Bfly4 Bfly4 Permute Permute in3 out3 + + … … out4 in4 Bfly4 Bfly4 … … * t0 in63 out63 - - * t1 * t2 *j * t3 Combinational IFFT All numbers are complex and represented as two sixteen bit quantities. Fixed-point arithmetic is used to reduce area, power, ... http://csg.csail.mit.edu/korea

  5. t0 t1 t2 t3 + + k0 k1 k2 k3 - - + + * - - * * *i * 4-way Butterfly Node function Vector#(4,Complex) bfly4 (Vector#(4,Complex) t, Vector#(4,Complex) k); • BSV has a very strong notion of types • Every expression has a type. Either it is declared by the user or automatically deduced by the compiler • The compiler verifies that the type declarations are compatible http://csg.csail.mit.edu/korea

  6. + + - - + + m z y * - - * * *i * BSV code: 4-way Butterfly function Vector#(4,Complex) bfly4 (Vector#(4,Complex) t, Vector#(4,Complex) k); Vector#(4,Complex) m, y, z; m[0] = k[0] * t[0]; m[1] = k[1] * t[1]; m[2] = k[2] * t[2]; m[3] = k[3] * t[3]; y[0] = m[0] + m[2]; y[1] = m[0] – m[2]; y[2] = m[1] + m[3]; y[3] = i*(m[1] – m[3]); z[0] = y[0] + y[2]; z[1] = y[1] + y[3]; z[2] = y[0] – y[2]; z[3] = y[1] – y[3]; return(z); endfunction Polymorphic code: works on any type of numbers for which *, + and - have been defined Note: Vector does not mean storage http://csg.csail.mit.edu/korea

  7. Complex Arithmetic • Addition • zR = xR + yR • zI = xI + yI • Multiplication • zR = xR * yR - xI *yI • zR = xR * yI + xI *yR The actual arithmetic for FFT is different because we use a non-standard fixed point representations http://csg.csail.mit.edu/korea

  8. BSV code for Addition typedef struct{ Int#(t) r; Int#(t) i; } Complex#(numeric type t) deriving (Eq,Bits); function Complex#(t) \+ (Complex#(t) x, Complex#(t) y); Int#(t) real = x.r + y.r; Int#(t) imag = x.i + y.i; return(Complex{r:real, i:imag}); endfunction http://csg.csail.mit.edu/korea

  9. Bfly4 in0 out0 Bfly4 Permute Bfly4 out1 in1 Bfly4 x16 in2 out2 Bfly4 Bfly4 Bfly4 Permute Permute out3 in3 … … out4 in4 Bfly4 Bfly4 … … out63 in63 Combinational IFFT stage_f function function Vector#(64, Complex) stage_f (Bit#(2) stage, Vector#(64, Complex) stage_in); function Vector#(64, Complex) ifft (Vector#(64, Complex) in_data); repeat stage_f three times http://csg.csail.mit.edu/korea

  10. BSV Code: Combinational IFFT function Vector#(64, Complex) ifft (Vector#(64, Complex) in_data); //Declare vectors Vector#(4,Vector#(64, Complex)) stage_data; stage_data[0] = in_data; for (Integer stage = 0; stage < 3; stage = stage + 1) stage_data[stage+1] = stage_f(stage,stage_data[stage]); return(stage_data[3]); The for loop is unfolded and stage_f is inlined during static elaboration Note: no notion of loops or procedures during execution http://csg.csail.mit.edu/korea

  11. BSV Code: Combinational IFFT- Unfolded function Vector#(64, Complex) ifft (Vector#(64, Complex) in_data); //Declare vectors Vector#(4,Vector#(64, Complex)) stage_data; stage_data[0] = in_data; for (Integer stage = 0; stage < 3; stage = stage + 1) stage_data[stage+1] = stage_f(stage,stage_data[stage]); return(stage_data[3]); stage_data[1] = stage_f(0,stage_data[0]); stage_data[2] = stage_f(1,stage_data[1]); stage_data[3] = stage_f(2,stage_data[2]); Stage_f can be inlined now; it could have been inlined before loop unfolding also. Does the order matter? http://csg.csail.mit.edu/korea

  12. twid’s are mathematically derivable constants Bluespec Code for stage_f function Vector#(64, Complex) stage_f (Bit#(2) stage, Vector#(64, Complex) stage_in); begin for (Integer i = 0; i < 16; i = i + 1) begin Integer idx = i * 4; let twid = getTwiddle(stage, fromInteger(i)); let y = bfly4(twid, stage_in[idx:idx+3]); stage_temp[idx] = y[0]; stage_temp[idx+1] = y[1]; stage_temp[idx+2] = y[2]; stage_temp[idx+3] = y[3]; end //Permutation for (Integer i = 0; i < 64; i = i + 1) stage_out[i] = stage_temp[permute[i]]; end return(stage_out); http://csg.csail.mit.edu/korea

  13. Higher-order functions:Stage functions f1, f2 and f3 function f1(x); return (stage_f(1,x)); endfunction function f2(x); return (stage_f(2,x)); endfunction function f3(x); return (stage_f(3,x)); endfunction What is the type of f1(x) ? http://csg.csail.mit.edu/korea

  14. Bfly4 in0 out0 Bfly4 Permute Bfly4 in1 out1 Bfly4 x16 in2 out2 Bfly4 Bfly4 Bfly4 Permute Permute in3 out3 … … in4 out4 Bfly4 Bfly4 … … in63 out63 Reuse the same circuit three times to reduce area Suppose we want to reuse some part of the circuit ... But why? http://csg.csail.mit.edu/korea

  15. Architectural Exploration: Area-Performance tradeoff in 802.11a Transmitter http://csg.csail.mit.edu/korea

  16. Depending upon the transmission rate, consumes 1, 2 or 4 tokens to produce one OFDM symbol Cyclic Extend Controller Scrambler Encoder Interleaver Mapper IFFT IFFT Transforms 64 (frequency domain) complex numbers into 64 (time domain) complex numbers One OFDM symbol (64 Complex Numbers) accounts for 85% area 802.11a Transmitter Overview headers Must produce one OFDM symbol every 4 msec 24 Uncoded bits data http://csg.csail.mit.edu/korea

  17. Preliminary results[MEMOCODE 2006] Dave, Gerding, Pellauer, Arvind Design Lines of Relative Block Code (BSV) Area Controller 49 0% Scrambler 40 0% Conv. Encoder 113 0% Interleaver 76 1% Mapper 112 11% IFFT 95 85% Cyc. Extender 23 3% Complex arithmetic libraries constitute another 200 lines of code http://csg.csail.mit.edu/korea

  18. Bfly4 in0 out0 Bfly4 Permute Bfly4 out1 in1 Bfly4 x16 out2 in2 Bfly4 Bfly4 Bfly4 Permute Permute in3 out3 … … in4 out4 Bfly4 Bfly4 … … in63 out63 Reuse the same circuit three times to reduce area Combinational IFFT http://csg.csail.mit.edu/korea

  19. f f g f g Design Alternatives Reuse a block over multiple cycles we expect: Throughput to Area to decrease – less parallelism decrease – reusing a block The clock needs to run faster for the same throughput  hyper-linear increase in energy http://csg.csail.mit.edu/korea

  20. Bfly4 in0 out0 Permute … in1 out1 Bfly4 in2 out2 in3 out3 in4 out4 … … in63 out63 Circular pipeline: Reusing the Pipeline Stage Stage Counter http://csg.csail.mit.edu/korea

  21. in0 out0 in1 out1 Permute in2 out2 in3 out3 in4 out4 … … in63 out63 Superfolded circular pipeline: Just one Bfly-4 node! Bfly4 64, 2-way Muxes Stage 0 to 2 4, 16-way Muxes 4, 16-way DeMuxes Index: 0 to 15 Index == 15? http://csg.csail.mit.edu/korea

  22. Combinational f1 f2 f3 C inQ outQ Pipeline f1 f2 f3 P inQ outQ Folded Pipeline f FP inQ outQ Clock? Area? Throughput? Pipelining a block Clock: C < P  FP Area: FP < C < P Throughput: FP < C < P http://csg.csail.mit.edu/korea

  23. Syntax: Vector of Registers • Register • suppose xandyare both of type Reg. Then x <= ymeans x._write(y._read()) • Vector of Int • x[i] means sel(x,i) • x[i] = y[j] means x = update(x,i, sel(y,j)) • Vector of Registers • x[i] <= y[j] does not work. The parser thinks it means (sel(x,i)._read)._write(sel(y,j)._read), which will not type check • (x[i]) <= y[j] parses as sel(x,i)._write(sel(y,j)._read), and works correctly Don’t ask me why http://csg.csail.mit.edu/korea

  24. Static vs dynamic expressions • Expressions that can be evaluated at compile time will be evaluated at compile-time • 3+4  7 • Some expressions do not have run-time representations and must be evaluated away at compile time; an error will occur if the compile-time evaluation does not succeed • Integers, reals, loops, lists, functions, … http://csg.csail.mit.edu/korea

More Related