210 likes | 303 Views
THE PROBLEM. TO CLASSIFY EEG SIGNALS USING WAVELET TRANSFORMS AND NEURAL NETWORKS. A SOLUTION. The Brain. A Neuron Cell. Electrode Placement. Discrete Fourier Transform. Time-Frequency Plane. y(t)=f(t). Short Time Fourier Transform. Heisenberg Principle:. A ‘Sliding Window’.
E N D
THE PROBLEM • TO CLASSIFY EEG SIGNALS USING WAVELET TRANSFORMS AND NEURAL NETWORKS ISSC DIT Kevin St.
A SOLUTION ISSC DIT Kevin St.
The Brain • A Neuron Cell ISSC DIT Kevin St.
Electrode Placement ISSC DIT Kevin St.
Discrete Fourier Transform Time-Frequency Plane y(t)=f(t) ISSC DIT Kevin St.
Short Time Fourier Transform Heisenberg Principle: ISSC DIT Kevin St.
A ‘Sliding Window’ ISSC DIT Kevin St.
A Windowed EEG Signal ISSC DIT Kevin St.
Spectrogram of the Mathematics task EEG signal ISSC DIT Kevin St.
A 3-D Spectrogram of an EEG signal ISSC DIT Kevin St.
Time-Frequency and Corresponding Basis Function ISSC DIT Kevin St.
Logarithmic Tree ISSC DIT Kevin St.
Wavelet Transform implementation • using Subband Coding ISSC DIT Kevin St.
An example of a Pruning cost analysis Prune if M(Parent)>M(child1)+M(child2) ISSC DIT Kevin St.
Best Tree Structure for the Mathematics Task ISSC DIT Kevin St.
The Wavelet Packet Transform Time-Frequency Plane ISSC DIT Kevin St.
Wavelet Coefficients: Augmented Time Format ISSC DIT Kevin St.
Neural Network Structure ISSC DIT Kevin St.
Recognition rate results for the WPT ISSC DIT Kevin St.
Double-Sideband Suppressed Carrier:Reconstruction of the Wavelet Coefficients ISSC DIT Kevin St.
A Designer Wavelet ISSC DIT Kevin St.