260 likes | 423 Views
Energy SecurityReasonable Tariff PolicyAttendance Services for Entire PopulationMinimum Cost Expansion considering Social-environmental ConstraintsRespect to ContractsStrengthening of Planning. PRINCIPLES AND GOALS OF THE BRAZILIAN ENERGY POLICY ? 1/2. PRINCIPLES AND GOALS OF THE BRAZILIAN EN
E N D
3. PRINCIPLES AND GOALS OF THE BRAZILIAN ENERGY POLICY – 2/2
Matrix Diversification
National Integration
National Energy Sources Fostering, Renewable and Competitive
National Technology Development
South-American Energy Integration
9. Outras Renováveis (critério adotado pelo BEN): Casca de Arroz, Resíduos de Madeira, Eólica e Óleos Vegetais (Biodiesel e HBio) Outras Renováveis (critério adotado pelo BEN): Casca de Arroz, Resíduos de Madeira, Eólica e Óleos Vegetais (Biodiesel e HBio)
10. Oferta Interna de Energia (OIE) = Consumo Final + Perdas (distribuição, armazenagem e transformação) Oferta Interna de Energia (OIE) = Consumo Final + Perdas (distribuição, armazenagem e transformação)
12. 2007:
- Biomassa: inclui 559 GWh de eólica equivalente a 0,1% da Oferta Total de Energia Elétrica
- Outras Fontes Renováveis: Não há.
2030: Outras Inclui Eólica (0,9%), Biomassa da Cana (2,8%) e Resíduos Urbanos Renováveis (0,6%) 2007:
- Biomassa: inclui 559 GWh de eólica equivalente a 0,1% da Oferta Total de Energia Elétrica
- Outras Fontes Renováveis: Não há.
2030: Outras Inclui Eólica (0,9%), Biomassa da Cana (2,8%) e Resíduos Urbanos Renováveis (0,6%)
14. INTERCONECTED NATIONAL SYSTEM
15. NUCLEAR ALTERNATIVE FOR ELECTRICITY GENERATION IN BRAZIL History
Angra I (1970s).
Nuclear Agreement with Germany, in 1975 (eight nuclear power plants of 1.245 MW until 1990).
High market growth;
Lack of knowledge about Brazilian hydroelectric potential;
Doubts about electricity long-distance transmission.
Angra II: Operation in 2000
16. NUCLEAR ALTERNATIVE FOR ELECTRICITY GENERATION IN BRAZIL Angra III`s Conclusion – CNPE`s decision
(Operation in 2014)
Competitive electricity generation alternative compared to other primary energy sources (considering the required investment to complete the construction).
Brazilian Power System requirements: Large projects – Hydros in Amazon region and Nuclear Power Plants.
17. NUCLEAR ALTERNATIVE FOR ELECTRICITY GENERATION IN BRAZIL Why Nuclear Power Generation in Brazilian’s Future?
1) Exhaustion of the Brazilian Hydro Potential, on the long run (horizon 2030).
Considering the national hydro potential (260.000 MW), around 90.000 MW have already been explored and 90.000 MW more will be installed until 2030, summing up 180.000 MW
On the long run, Brazil requires thermo power plants (conventional and Nuclear) and renewable sources (non Hydro), preferably wind and solar.
18. NUCLEAR ALTERNATIVE FOR ELECTRICITY GENERATION IN BRAZIL 2) Competitiveness of the Nuclear Option
The nuclear energy cost is about R$150. It is compatible with the results of the last auctions and additionally with the future marginal cost of electric energy, which are decreasing on the long run.
19. 3) “Base” Operation
A Nuclear Plant is suitable for a “base” operation, which is necessary, on the long run, in a generation system like the Brazilian where hydro power is predominant.
Observations: other standard base thermo plants are fueled by coal and biomass; electric generation from natural gas have cost limitations for this kind of operation and the natural gas has more noble uses.
20. 4) Environmental Aspects
The nuclear power plants have the lowest green house effect emissions.
Radioactive waste.
5) Technological development
Creation of “noble” jobs.
Domestic industry quality.
23. ELECTRICITY GENERATION (GW)
26. São estimadas no setor de energia todas as emissões antrópicas devidas à produção, à transformação e ao consumo de energia. Inclui tanto as emissões decorrentes da queima de combustíveis quanto as emissões devidas a fugas da cadeia de produção, transformação, distribuição e consumo.
As emissões mais importantes são as referentes ao CO2, 237 Tg/ano, basicamente devido à queima de combustíveis fósseis (98%), com um aumento de 16% de 1990 a 1994, refletindo um crescimento do seu consumo. Segue-se o CH4 (metano), com 0,4 Tg/ano, em grande parte (70%) devido à queima de biomassa (lenha, carvão vegetal, etc.), que diminuiu 9% no período devido à queda de consumo dessas fontes. São estimadas no setor de energia todas as emissões antrópicas devidas à produção, à transformação e ao consumo de energia. Inclui tanto as emissões decorrentes da queima de combustíveis quanto as emissões devidas a fugas da cadeia de produção, transformação, distribuição e consumo.
As emissões mais importantes são as referentes ao CO2, 237 Tg/ano, basicamente devido à queima de combustíveis fósseis (98%), com um aumento de 16% de 1990 a 1994, refletindo um crescimento do seu consumo. Segue-se o CH4 (metano), com 0,4 Tg/ano, em grande parte (70%) devido à queima de biomassa (lenha, carvão vegetal, etc.), que diminuiu 9% no período devido à queda de consumo dessas fontes.