260 likes | 432 Views
O uogólnionych i empirycznych bayesowskich przedziałach ufności dla pewnych funkcji komponentów wariancyjnych w mieszanych modelach liniowych. Andrzej Michalski Katedra Matematyki Uniwersytet Przyrodniczy we Wrocławiu. Plan referatu. 0. Literatura 1. Wprowadzenie 2. Sformułowanie problemu
E N D
O uogólnionych i empirycznych bayesowskich przedziałach ufności dla pewnych funkcji komponentów wariancyjnych w mieszanych modelach liniowych Andrzej Michalski Katedra Matematyki Uniwersytet Przyrodniczy we Wrocławiu
Plan referatu 0. Literatura 1. Wprowadzenie 2. Sformułowanie problemu 3. Bayesowskie przedziały ufności dla funkcji komponentów wariancyjnych 4. Uogólnione przedziały ufności dla komponentów wariancyjnych 4.1idea konstrukcji uogólnionych przedziałów ufności 4.2 przegląd uogólnionych statystyk testowych 5. Porównania – przykłady numeryczne 6. Wnioski
Literatura • A. Michalski, BAYESIAN AND GENERALIZED CONFIDENCE INTERVALS ON VARIANCE RATIO AND ON THE VARIANCE COMPONENT IN MIXED LINEAR MODELS, Discussiones Mathematicae – Probability and Statistics 29 (2009), 5-29. • B. Arendacká, GENERALIZED CONFIDENCE INTERVALS ON THE VARIANCE COMPONENT IN MIXED LINEAR MODELS WITH TWO VARIANCE COMPONENTS, Statistics39 (4) (2005), 275-286. • K.W. Tsui and S. Weerahandi, GENERALIZED P-VALUES IN SIGNIFICANCE TESTING OF HYPOTHESES IN THE PRESENCE OF NUISANCE PARAMETERS, J. Amer. Statist. Assoc. 84 (1989), 602-607. • S. Weerahandi, TESTING VARIANCE COMPONENTS IN MIXED LINEAR MODELS WITH GENERALIZED P-VALUES, J. Amer. Statist. Assoc. 86 (1991), 151-153. 5. S. Weerahandi, GENERALIZED CONFIDENCE INTERVALS, J. Amer. Statist. Assoc. 86 (1991), 151-153. 6. S. Weerahandi, EXACT STATISTICAL METHODS FOR DATA ANALYSIS, Springer-Verlag, New York 1995. 7. L. Zhou and T. Mathew, SOME TESTS FOR VARIANCE COMPONENTS USING GENERALIZED P-VALUES, Technometrics 36 (1994), 394-402.
1. Wprowadzenie Rozważmy następujący mieszany liniowy model normalny: y - (nx1) wektor obserwacji X - (nxq) rank(X) =s≤q X1- (nxq1) rank(X1) =s1≤q1 - znane macierze układu - (qx1) wektor stałych efektów 1- (q1x1) wektor losowych efektów e - (nx1) wektor błędów losowych ~ N(0 , 2 In) nieskorelowanych z 1
Rozważamy estymatory kwadratowe y’Ay , które są niezmiennicze względem grupy translacji g(y) = y +X ,tj. dla których AX=0. Jeśli B jest (n-s)xn macierzą: BB’ = In-s i B’B = I – XX+ , to t = By jest maksymalnym niezmiennikiem względem grupy G translacji. Wówczas model dla t jest postaci: Niech W = hi=1iEiEi’ będzie spektralną dekompozycją macierzy W, gdzie 1 .> 2 > h-1 >h = 0, a i dla i=1,…,h sa ich krotnościami. Rozważamy następujące statystyki Zi = t’Ei t/i dla i=1,…h.
Lemat (Olsen, Seely, Birkes, (1976) ~ Ponadto, jest maksymalną niezmienniczą statystyką względem grupy G.
2. Sformułowanie problemu Problem przedziałowej estymacji komponentu wariancyjnego 12 jest związany również z testowaniem hipotez postaci: Na ogół testy o dobrych własnościach statystycznych (najmocniejsze lub lokalnie najlepsze) prowadzą do przedziałów ufności o pożądanych własnościach statystycznych na ustalonym poziomie ufności. Ze względu na obecność w modelu parametru zakłócającego 2nie możemy bezpośrednio w oparciu o statystyki testowe skonstruować przedziału ufności dla 12 , stąd użytecznym staje się wprowadzenie idei uogólnionych p-wartości prawd. i uogólnionych statystyk testowych.
Definicja 2.1. Estymator y’Ay jest Bayesowskim niezmienniczym kwadratowym i nieobciążonym (BIQU) estymatorem funkcji f’ względem U =(uij)i.j=1.2 (lub względem rozkładu a priori : E’ = U ), jeśli A minimalizuje Bayesowskie ryzyko Var(y’Ay) w klasie symetrycznych i dodatnio określonych macierzy spełniających warunki: AX=0 i E(y’Ay)=f’. Niech Ubędzie klasą macierzy U symetrycznych i dodatnio określonych o nieujemnych elementach. Wówczas klasa U może być z dokładnością do mnożenia przez stałą scharakteryzowana przez dwa nieujemne parametry u, v tj.: [Gnot and Kleffe (1983), Gnot (1991) ] 2. Bayesowskie przedziały ufności dla funkcji komponentów wariancyjnych
BAYESOWSKIE ESTYMATORY PRZEDZIAŁOWE DLA UZYSKANE W OPARCIU O ESTYMATORY PUNKTOWE TYPUBIQUE (BEST INVARIANT QUADRATIC UNBIASED ESTIMATOR) Dla dowolnej funkcji klasa dopuszczalnych niezmienniczych kwadratowych nieobciążonych estymatorów w modelu dla k=2 pokrywa się z liniowymi kombinacjami statystyk Zi postaci: gdzie lub
KONSTRUKCJA DOKŁADNYCH PRZEDZIAŁÓW UFNOŚCI DLA na poziomie ufności 1-p wg algorytmu A1-5 : 1.WYBÓR ESTYMATORA BIQUEdla ze względu na rozkłada priorina 2.WYZNACZENIE WARIANCJI ESTYMATORA 3. WYZNACZENIE DOKŁADNEGO ROZKŁADU PRAWD. ESTYMATORA
dla ustalonego i dla każdego ( 0, ∞ ) otrzymujemy: 4.ZASTOSOWANIE ROZKŁADU FORM KWADRATOWYCH DO WYZNACZENIA KWANTYLI ODPOWIEDNIO RZĘDUp1 i p2 lub
5.OPTYMALNY WYBÓR KWANTYLI A5.1. dla każdego ustalonego A5.2. Ostatecznie, otrzymujemy (1-p)*100% przedział ufności dla , który jest „dobrym” otoczeniem estymatora punktowego i zabezpiecza nas przed „najgorszym scenariuszem”:
Postać explicite ROZKŁADU PRAWD. DOWOLNEJ FORMY KWADRATOWEJ dla dowolnych i została podana przez GIL-PELAEZ (1951) : gdzie ALGORYTMY:IMHOF (1961); MARTYNOV (1975, 1977); DAVIS (1977);MICHALSKI (1990); Mathematica 4.0 i ↑
4. Uogólnione przedziały ufności dla komponentów wariancyjnych 4.1. Idea konstrukcji uogólnionych przedziałów ufności TSUI & WEERAHANDI (1989), WEERAHANDI (1991, 1993) X ~ F(x, ), gdzie = (, ) jest wektorem nieznanych parametrów podlega wnioskowaniu statystycznemu, jest wektorem parametrów zakłócających ROZWAŻMY HIPOTEZY : H0: 0 vs H1: > 0 i odpowiednie testy oparte o tzw. uogólnione „p-VALUE”.
PROBLEM: Jak okreslić obszar krytyczny na bazie statystyki testowej, której rozkład nie zależy od parametrów zakłócających? = (, ) W TYM CELU ROZWAŻAMY FUNKCJE T(X, x, ) O WŁASNOŚCIACH: 1. zaobserwowana wartość tobs = T(x, x, ) nie zależy od nieznanych parametrów 2. dla ustalonego , rozkład zmiennej losowej T nie zależy od dla x 3. dla ustalonego x i , Pr{ T t, } jest monotoniczną funkcją względem dla t FUNKCJa T(X, x, ) SPEŁNIAJĄCA WARUNKI 1 – 3 NAZYWANA JEST UOGÓLNIONĄ ZMIENNĄ TESTOWĄ I MOŻE BYĆ ZASTOSOWANA DO OKRESLENIA OBSZARU KRYTYCZNEGO.
Niech dla każdego ustalonego x i funkcja rozkładu prawd. T(X, x, (, )) będzie nierosnącą funkcją ( tj. Pr{T(X, x, (, )) ≥ t} jest f. niemalejąca ) Wówczas UOGÓLNIONA ZMIENNA TESTOWA T nazywana jest STOCHASTYCZNIE ROSNACĄ ze względu na , a UOGÓLNIONY OBSZAR KRYTYCZNY dla testowania hipotezy H0jest postaci: C(x, ) = {X; T(X, x, ) T(x, x, )} a UOGÓLNIONA WARTOŚĆ p ( „p – VALUE” ) dla testowania ww hipotez jest wyrażona przez: p(x) = supo Pr(XC(x, ) ) = supo Pr(T(X, x, (, ) tobs) = = Pr(T(X, x, (0, ) tobs 0)
MAJĄC UOGÓLNIONY OBSZAR KRYTYCZNY MOŻEMY OKRESLIĆ FUNKCJĘ MOCY OPARTĄ O DANE (a data –based power function): (x, ) = Pr(XC(x, (, )) ) dla której zachodzi: • (x, 0) =p(x) b) dla każdego ustalonego x (x, ) (dla dowolnego ) jest zmienną ~ R(0,1) c) dla każdego ustalonego x (x, ) jest monotoniczna funkcją Ze względu na własności b) i c) funkcja mocy może być użyta do konstrukcji przedziału ufności dla . Dla dowolnych 1 , 2 (0 ,1) i danej zaobserwowanej wartości x mamy: Pr{ 1(x, )2}=1-p Ostatecznnie, przez inwersję funkcji otrzymujemy (1-p)100% uogólniony przedział ufności dla .
4. Uogólnione przedziały ufności dla komponentów wariancyjnych 4.2. Przegląd uogólnionych statystyk testowych Rozważmy następujące statystyki Uii Si : dla i = 1,…,h 1. Dla h=2 posiada własności uogólnionej zmiennej testowej: tobs = u1/u2 nie zależy od nieznanych parametrów, jej rozkład jest niezależny od parametru zakłócającego σ2 a T jest stochastycznie rosnąca względem σ12 .
2. Dla h > 2 (Zhou & Mathew (1994) ) dla dowolnych ci > 0 1. odp. testowi Walda 2. odp. zmod. testowi Walda i oparta o Bayesowski est. odp. stat. testowej opartej o Bayesowski gran. est. 3.
4. Weerahandi (1995)dla mieszanego niezrównowazonego modelu1-kierunkowej klasyfikacji Wartości funkcji mocy opartej o statystykę T1 obliczamy z następującej nierówności : gdzie oznacza rozkład prawd. liniowej kombinacji niezależnych zmiennych losowych , a jest f. gestości dla t.j.:
~ 5. Porównania – przykłady numeryczne MIESZANY MODEL 2-KIERUNKOWEJ KLASYFIKACJI [ Ex.2 , Michalski (2009)] N – macierz incydencji układu blokowego r = (4, 4, 4, 8, 48) ; n=68
WYNIKI SYMULACJI (LS=2000) DLA WARTOŚCI PARAMETRÓW { (0.1 , 10) , (0.5 , 2) , ( 1, 1 ) , (2, 0.5) , (5 , 0.2) } Tab.1. Prawdopodobieństwa pokrycia prawdziwej wartości przez uogólnione przedziały ufności dla różnych statystyk testowych
Tab.2. Średnie długości uogólnionych przedziałów ufności dla różnych statystyk testowych
Tab.3. Bayesowskie przedziały ufności na poziomie ufności 1-(p1+p2)=0.95 i ich długości l(p1, p2) dla wybranych par (u,v).
6. Wnioski • Wyniki symulacji nie wykazują, że obliczone prawdopodobieństwa • pokrycia prawdziwych wartości parametru 12 są mniejsze niż przyjęty poziom ufności 1-p = 0.95 • (ii) Należy zachować ostrożność przy wyborze uogólnionych statystyk testowych do konstrukcji przedziałów ufności np. statystyka testowa • T1 daje mało stabilne rezultaty dla śr. długości przedziałów ufności • dla różnych par (12 , 2 ). • (iii) Statystyki T11/ i T2 dają zbliżone rezultaty i krótsze przedziały ufności jak rośnie iloraz komponentów wariancyjnych w porównaniu • do statystyki Walda • (iv) Bayesowskie przedziały ufności stanowią istotną alternatywę dla uogólnionych przedziałów ufności dla różnych par (u,v) są krótsze • i bardziej stabilne. Ponadto, wybór odp. wartości kwantylowych pozwalających zachować zadany poziom ufności, powinien być • asymetryczny.
D z i ę k u j ę Szanownym Słuchaczom za … Uwagę Max