1 / 31

Pembentukan model rlb

Pembentukan model rlb. Kuliah ke 8 anareg Dosen : usman bustaman. Model building algoritm. Data collection & preparation: experimental or not  control experiment  control experiment with covariates  confirmatory observational studies  explanatory observational studies

Download Presentation

Pembentukan model rlb

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Pembentukan model rlb Kuliahke 8 anareg Dosen: usmanbustaman

  2. Model building algoritm • Data collection & preparation: experimental or not •  control experiment •  control experiment with covariates •  confirmatory observational studies •  explanatory observational studies • (explanatory) Variable selection • Model refinement/selection • Model validation • Focus padakuliah 8: •  (explanatory) Variable selection

  3. Model building A B

  4. A B Model building

  5. (explanatory) Variable selection • Memilihvariabelbebas yang cukupmenjelaskan/memprediksivariabeltakbebas, sehingga • Kontribusivariabelbebas lain (yang tidakmasukdalam model) dapatdiabaikan. • Pertimbangan: • Menjelaskan (explanatory) vsMemprediksi (prediction) • Pertimbanganteoritisvspertimbanganstatistik • Omitting variable bias vs parsimony •  best subset (explanatory) variables

  6. Sebelumitu… • Cek dependent/ndependentvariabel transformasiatautdk? • - histogram, normality plot • Cekhubunganantarvariabel • - pearson correlation • - scatter plot matrix

  7. Cth: Dependent var.

  8. Cth: independent var.

  9. How to get the best subset… • All possible regression • Forward selection • Backward elimination • Stepwise regression

  10. How to…. All possible regression •  • MSE(p) • Cp • Netter, ch. 12, p. 423

  11. How to…. All possible regression

  12. How to… w/ • p = jumlah parameter = 1,2,3,…,P • SSRp = Sum square regression w/ p parameter (incl. β0) • SSEp = Sum square error w/ p parameter (incl. β0) • SSTO = Sum square total • Goal: to find the point where adding more X variables is not worthwhile because it leads to a very small increase in R2.

  13. Cth: regresidgnhanya X4dlm model:

  14. Using plot

  15. How to… w/ MSE(p) • sangatdipengaruhioleh p  p akanikut  •  use adjusted by df ( ) •  only depent on MSE  use MSE(p) •  Subset X ygmeminimumkan MSE(p) ataumendekati minimum sdmkshgpenambahanvariabel “takberguna”

  16. Cth: regresidgnhanya X4dlm model:

  17. Using MSE(p) plot

  18. How to … w/ Cp • Estimator  • If bias = 0  Random error Bias Total MSE(p) Buktikan !

  19. How to … w/ Cp • JikadiplotCpvs p: •  model dgn bias kecilakanberadasekitargarisCp = p •  model yang bias akanberada di atasgarisCp = p • So best subset is: • MemilikinilaiCpkecil  MSE kecil, atau • Bernilaisekitar p  bias kecil BgmkalauCpkeciltapi bias ?

  20. Using CpPlot

  21. Kendala …. • All possible regression mengandung 2(p-1) model yang harusditeliti,…. Jika p-1 = 10  ada 1024 model yang harusditeliti… •  gunakankomputer (buatalgoritma) •  pilih 5 atau 3 model terbaik •  sometimes inefficient

  22. Stepwise regression • Proseduruntukmemilih best subset regression • Manual? …. Janganbuatsusahhidupygsudahsusah • GunakanKomputer ! • Steps: • 1. mulaidengan all possible RLS, hitung F*k • F*kdengannilaiterbesardan > nilaitttmasuksebagaikandidat ≈ Forward selection

  23. Stepwise regression • 2. misal X4 terpilihpada step 1, makalakukan all possible RLB dgn 2 variabel, laluhitungF*k • F*kdengannilaiterbesardan > nilaitttmasuksebagaikandidat • 3. pertimbangkanadakahdarivariabel X dari model pada step sebelumnyaada yang perludi”buang” dari model, dengankriteriaF*k bernilai paling kecildan < nilaittt ≈backward elimination • 4. ulangi step 2 dan 3 hinggatakadalagivariabel yang “layak” untukmasukdalam model  best model

  24. How to…. w/ stepwise regression

  25. How to…. w/ stepwise regression

  26. How to…. w/ stepwise regression

  27. How to…. w/ stepwise regression

  28. How to…. w/ stepwise regression

  29. How to…. w/ stepwise regression

More Related