1 / 12

A man-machine human interface for a special device of the pervasive computing world

A man-machine human interface for a special device of the pervasive computing world. B. Apolloni, S. Bassis, A. Brega, S. Gaito, D. Malchiodi, A.M. Zanaboni DSI - University of Milano (I). Outline. A procedure detecting attention states in car driving

Download Presentation

A man-machine human interface for a special device of the pervasive computing world

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. A man-machine human interface for a special device of the pervasive computing world B. Apolloni, S. Bassis, A. Brega, S. Gaito, D. Malchiodi, A.M. Zanaboni DSI - University of Milano (I)

  2. Outline • A procedure detecting attention states in car driving • Fed by biologic input supplied through non invasive sensors • Explains its output through a possibly interpretable rule

  3. The data • One subject using a car driver simulator • Subjected to alternate attention demanding manoeuvres (fast lane exchange, pedestrian avoidance) and relaxed driving • 4 signals traced by a Biopac device (SKT, GSR, ECG, RSP) • Collected by the School of Psychology, Queen’s University Belfast.

  4. Preprocessing • Extracted features • 8 conventional (from medical knowledge) • FFT processing for ECG • Drift of the ECG signal from a neural prediction • SKT not considered (constant)

  5. Feature processing I t-1 t t+1 • 15 Boolean values are extracted from a time-window of width 3 • Result of a Boolean ICA through minimization of empirical entropy • 253 connections (after pruning)

  6. Feature processing II • Boolean values interpreted as propositional variables • Minimal DNF and DNF on variables interpreted as symbolic wavelets Begin DNF=ø; for each positive exampleu; DNF = DNF{m}; return DNF; End

  7. An obtained CNF (x1+x3+x6+x8+x10+x14)(x1+x2+x5+x6+x7+x9+x11+x12+x13)(x1+x2+x6+x7+x9+x10+x12+x14)(x1+x2+x5+x7+x8+x12+x13+x15)(x1+x3+x5+x11+x13+x15)(x3+x8+x10+x11+x13+x14+x15)(x1+x2+x4+x6+x7+x11+x12+x13+x14+x15)(x1+x2+x4+x8+x12+x13+x14+x15)(x1+x2+x3+x7+x8+x10+x13+x14+x15)(x3+x4+x8+x10+x13+x14+x15)(x1+x3+x6+x7+x8+x13+x14)(x3+x5+x7+x8+x13)(x2+x3+x6+x7+x10+x11+x12+x13+x14)(x1+x5+x6+x8+x9+x11+x12+x15)(x1+x5+x6+x8+x9+x11+x14+x15)(x3+x5+x7+x9+x10+x11)(x1+x3+x4+x7+x13+x14+x15)(x1+x2+x3+x8+x11+x13+x14+x15)(x2+x5+x6+x7+x9+x11+x12+x15)(x2+x3+x4+x6+x9+x10+x11+x12+x14)(x2+x4+x5+x7+x8+x13+x15)(x3+x4+x6+x7+x10+x13)(x3+x4+x6+x8+x10+x14)(x1+x4+x7+x8+x13+x15)(x1+x4+x5+x7+x8+x9+x15)(x4+x7+x8+x10+x15)(x4+x7+x8+x10+x14)(x2+x4+x5+x6+x7+x9+x10+x12+x13+x15)(x1+x3+x5+x8+x13+x15)(x1+x3+x6+x9+x10+x11+x14)(x1+x6+x9+x10+x11+x12+x14)(x1+x6+x8+x9+x11+x12+x14)(x1+x2+x4+x6+x7+x10+x11+x12+x13+x14)(x2+x4+x5+x8+x9+x10+x12+x13+x15)(x2+x4+x5+x7+x9+x10+x11+x12)(x1+x3+x6+x7+x8+x10+x13)(x3+x4+x5+x6+x8+x9+x10+x11)(x2+x5+x6+x8+x9+x10+x11+x12)(x2+x5+x6+x7+x8+x9+x11+x12)(x1+x2+x4+x5+x6+x7+x9+x12+x13)(x3+x4+x5+x7+x10+x11)(x1+x2+x5+x8+x10+x12+x13+x15)(x1+x2+x6+x7+x9+x10+x11)(x1+x2+x5+x7+x8+x9+x14)(x3+x4+x5+x8+x9+x10+x13+x15)(x3+x8+x9+x10+x11+x13)(x3+x9+x10+x11+x13+x14)(x1+x6+x7+x8+x9+x10+x12)(x1+x2+x3+x6+x11+x13+x14+x15)(x2+x4+x5+x6+x9+x11+x12+x14+x15)(x2+x6+x7+x10+x11+x12+x13+x15)(x2+x4+x6+x10+x11+x12+x14+x15)(x2+x5+x6+x9+x10+x11+x12+x14+x15)(x3+x4+x6+x8+x11+x14+x15)

  8. Post processing • Simplification of the learnt rules through stochastic optimization of the cost • L: rule length, r:rule radius, n:disregarded points

  9. A simplified CNF (x6+x11+x1+x13)(x10+x12+x9+x6)(x1+x13+x11+x5)(x3+x8+x6)(x4+x1+x13)(x12+x6+x7+x13)(x13+x8+x9+x4)(x1+x6+x8)(x12+x6+x7+x8)(x1+x8+x5+x7)(x4+x6+x7+x13)(x7+x9+x10+x11+x3)(x1+x8+x13+x15)(x3+x8+x13+x15)(x4+x7+x8)(x1+x6+x9+x10+x11)(x2+x6+x11+x12+x15)(x3+x5+x8+x13)(x4+x5+x7+x10+x11)(x3+x9+x10+x11+x13) • From 403 to 81 literals

  10. Performance I • 50 cross-validation test • FP: false positives; FN: false negatives

  11. Performance II

  12. Performance III

More Related