560 likes | 748 Views
Contribution à l’étude des Liaisons Optiques Atmosphériques : propagation, disponibilité et fiabilité. Al Naboulsi Maher. Equipe Optique de Champ Proche LPUB UMR CNRS 5027. FT R&D RESA/NET BELFORT. Plan de l’exposé. Introduction
E N D
Contribution à l’étude des Liaisons Optiques Atmosphériques : propagation, disponibilité et fiabilité Al Naboulsi Maher Equipe Optique de Champ Proche LPUB UMR CNRS 5027 FT R&D RESA/NET BELFORT
Plan de l’exposé • Introduction • Définition, intérêt et problématique des Liaisons Optiques Atmosphériques (LOA), • Propagation de la lumière dans l’atmosphère • Description physique (absorption, diffusion…), • Prédiction de l’atténuation de la lumière : • Approche empirique (modèle de Kruse, modèle de Kim), • Approche théorique (diffusion de Mie et codes de calcul " Fascode"). • Atténuation de la lumière par le brouillard • Variation de l’atténuation en fonction de la longueur d'onde, • Formules de transmission rapides à travers le brouillard (0,69 à 1,55 µm), • Comparaison du modèle de Fascode avec des conditions réelles de brouillard. • Étude expérimentale de la transmission optique à travers le brouillard • Dispositif expérimental déployé, • Mesures et comparaison de l’atténuation avec les différents modèles analytiques. • Calcul de disponibilité d’une LOA • Logiciel permettant de prédire la qualité de service (QoS) d’une LOA • Conclusion et perspectives
Plan de l’exposé • Introduction • Définition, intérêt et problématique des Liaisons Optiques Atmosphériques (LOA), • Propagation de la lumière dans l’atmosphère • Description physique (absorption, diffusion…), • Prédiction de l’atténuation de la lumière : • Approche empirique (modèle de Kruse, modèle de Kim), • Approche théorique (diffusion de Mie et codes de calcul " Fascode"). • Atténuation de la lumière par le brouillard • Variation de l’atténuation en fonction de la longueur d'onde, • Formules de transmission rapides à travers le brouillard (0,69 à 1,55 µm), • Comparaison du modèle de Fascode avec des conditions réelles de brouillard. • Étude expérimentale de la transmission optique à travers le brouillard • Dispositif expérimental déployé, • Mesures et comparaison de l’atténuation avec les différents modèles analytiques. • Calcul de disponibilité d’une LOA • Logiciel permettant de prédire la qualité de service (QoS) d’une LOA • Conclusion et perspectives
Définition et intérêt des LOA (1/2) Les liaisons optiques atmosphériques (LOA) utilisent en atmosphère libre la modulation d'un faisceau laser pour échanger des informations binaires "full duplex" Intérêt des (LOA) dans le domaine de l'ingénierie et le domaine des télécommunications. • Le regain d'intérêt pour cette technique vise plusieurs marchés : • la connexion Internet à haut débit pour le dernier "mile" de la boucle locale • les liaisons temporaires à haut débit, • le "backhaul" de la téléphonie mobile (3 G), • impossibilité d'utilisation de la fibre optique.
Définition et intérêt des LOA (2/2) Avantages des systèmes LOA : • Absence d'interférence, • Absence de licence, • Facilité d'installation, • Déploiement à travers les vitres (ou à partir des toits d'immeubles), • Pas de génie civil, pas de permis, • Débit d'une fibre optique, voire meilleur, • Equipement récupérable, réutilisable • Coût d’installation d’une LOA < liaison fibrée.
Problématique et paramètres d'une LOA (1/3) Atténuation par les fenêtres Lumière du soleil Brouillard Affaiblissement géométrique q Alignement Scintillation Distance Obstructions Nuages bas Les défis et les facteurs environnementaux : Chacun de ces facteurs peut provoquer une atténuation du signal
Problématique et paramètres d'une LOA (2/3) Le rôle de la longueur d'onde : Les caractéristiques des LOAdécoulent de l’absorption et de la transmission de la lumière par l’atmosphère terrestre. L'atmosphère affecte tous les systèmes de télécommunication sans fil. Conditions météorologiques locales Disponibilité et fiabilité des LOA Le choix de l la minimisation des effets atmosphériques sur la transmission en espace libre,
Problématique et paramètres d'une LOA (3/3) Le rôle de la longueur d'onde : Pour les LOA, le choix de la longueur d'onde reste un sujet de discussion • Les équipements LOAexistants fonctionnent dans le visible à 0,69 µm et IR à 0,78, 0,85,1,55 µm, longueurs d'onde situées dans des fenêtres de transmission atmosphérique (absorption moléculaire négligeable). Dans le cadre de cette étude nous nous limiterons à l’étude de l'effet du brouillard sur les équipements LOA en fonction de la longueur d’onde. Ceci constitue la base de l’étude que nous avons mené au sein de FTR&D Belfort et de l’Université de DIJON (Équipe d’optique de champ proche).
Plan de l’exposé • Introduction • Définition, intérêt et problématique des Liaisons Optiques Atmosphériques (LOA), • Propagation de la lumière dans l’atmosphère • Description physique (absorption, diffusion…), • Prédiction de l’atténuation de la lumière : • Approche empirique (modèle de Kruse, modèle de Kim), • Approche théorique (diffusion de Mie et codes de calcul " Fascode"). • Atténuation de la lumière par le brouillard • Variation de l’atténuation en fonction de la longueur d'onde, • Formules de transmission rapides à travers le brouillard (0,69 à 1,55 µm), • Comparaison du modèle de Fascode avec des conditions naturelles de brouillard. • Étude expérimentale de la transmission optique à travers le brouillard • Dispositif expérimental déployé, • Mesures et comparaison de l’atténuation avec les différents modèles analytiques. • Calcul de disponibilité d’une LOA • Logiciel permettant de prédire la qualité de service (QoS) d’une LOA • Conclusion et perspectives
Propagation de la lumière dans l'atmosphère (1/3) Atténuation atmosphérique : • L’atmosphère affecte la lumière par absorption et diffusion (extinction), • L'extinction une diminution de la puissance transmise, • La puissance reçue à une distance L de l'émetteur est reliée à la puissance émise par la loi de BEER-LAMBERT : • t(l, L)est la transmittance totale de l'atmosphère à λ, • P(l, 0), P(l, L) ; puissance émise et puissance reçue du signal, • g (l) est l'atténuation ou coefficient d'extinction total par unité de longueur. • am,aadésignent les coefficients d'absorption moléculaire et aérosolaire, • bm,ba désignent les coefficients de diffusion moléculaire et aérosolaire.
Prédiction de l’atténuation Approche empirique (1/2) Coefficient d'extinction pour les ondes optiques (0,4 à 2,5 µm) (modèles de Kruse et de Kim) • V (km) est la distance pour laquelle le contraste optique de l'image d'un objet diminue à 2%de ce qu'il devrait être s'il était proche de nous, • V (km) est mesurée à 550 nm, l qui correspond au maximum de l'intensité du spectre solaire, • V est donnée par la relation de Koschmieder : • Visibilité caractérise l'opacité et la transparence de l'atmosphère.
Prédiction de l’atténuation Approche empirique (2/2) Atténuation par le brouillard : • Quand lavisibilitéV ≤1 kmet l'humidité relative Hr ~ 100% brouillard, • Le coefficient q a fait l'objet de nombreux travaux expérimentaux. Il dépend de la distribution de la taille des particules diffusantes : KIM & al KRUSE & al Atténuation indépendante del pour V<0.5 km Atténuation quand lpour autres visibilités Atténuationquand la longueur d'onde Relations largement utilisées dans la littérature dans le but de déterminer le bilan des LOA.
Prédiction de l’atténuation Approche théorique (1/5) Atténuation par le brouillard : • Les particules présentes dans l'atmosphère sont considérées: • Sphériques, isotropes et homogènes, • Agissant indépendamment. • La théorie de Mie les coefficients d‘absorption et de diffusion aérosolaire (par unité de longueur) : • n'etn” la partie réelle et la partie imaginaire de l'indice de réfraction de l'aérosol, • l est la longueur d'onde incidente, • r estle rayon de la particule, • Qa et Qd les sections efficaces d'absorption et de diffusion de Mie normalisées, • n(r) est la distribution de taille de particules.
Prédiction de l’atténuation Approche théorique (3/5) Atténuation par le brouillard : • Le coefficient d'extinction aérosolaire (absorption + diffusion)par unité de longueur est donné par : • n estl'indice de réfraction complexe de l'aérosol, • Qe est la section efficace d'extinction de Mie normalisée (facteur d'efficacité) : Ce coefficient permet la prédiction de l'effet du brouillard sur la transmission des ondes électromagnétiques.
Prédiction de l’atténuation Approche théorique (4/5) • Brouillard accumulation de gouttelettes en une distribution particulière de taille de particules, • Distribution de taille de particules représentée généralement par des fonctions analytiques ; distribution log normale (aérosols) et distribution gamma modifiée (brouillard) : • a, a et b : paramètres caractérisant la distribution de taille des particules, • n(r) : nombre de particules de rayon r par unité de volume. • Les codes de calcul de transmission atmosphérique; Fascode (Hitran), Lowtran et Modtran permettent de prédire la transmission atmosphérique, • Prise en compte de 2 distributions largement rencontrées dans la nature : • Brouillard d'advection, • Brouillard de convection (radiation).
Prédiction de l’atténuation Approche théorique (5/5) Une large gamme de distribution de taille de particules de brouillard existe dans la nature, • Fascode utilise 2 modèles qui représentent une large gamme de distributions de taille de particules mesurées. La distribution de taille de particules, l’indice de réfraction de l’eau et la section efficace d’extinction prédiction de l’effet du brouillard sur la transmission.
Plan de l’exposé • Introduction • Définition, intérêt et problématique des Liaisons Optiques Atmosphériques (LOA), • Propagation de la lumière dans l’atmosphère • Description physique (absorption, diffusion…), • Prédiction de l’atténuation de la lumière : • Approche empirique (modèle de Kruse, modèle de Kim), • Approche théorique (diffusion de Mie et codes de calcul " Fascode"). • Atténuation de la lumière par brouillard • Variation de l’atténuation en fonction de la longueur d'onde, • Formules de transmission rapides à travers le brouillard (0,69 à 1,55 µm), • Comparaison du modèle de Fascode avec des conditions naturelles de brouillard. • Étude expérimentale de la transmission optique à travers le brouillard • Dispositif expérimental déployé, • Mesures et comparaison de l’atténuation avec les différents modèles analytiques. • Calcul de disponibilité d’une LOA • Logiciel permettant de prédire la qualité de service (QoS) d’une LOA • Conclusion et perspectives
Atténuation due au brouillard (1/9) Variation de l'atténuation en fonction de la longueur d'onde : • Fascode les coefficients d'extinction (km-1) pour un brouillard d'advection et de convection. Minimum d' atténuation à 11,5µm Minimum d'atténuation à 10,6µm Entre 0,4 et 2,5 µm, au contraire des valeurs d'atténuations calculées à partir de l'approche empirique, l'atténuation quand l
Atténuation due au brouillard (2/9) Pour 2 types de brouillard (convection et d'advection), la différence d'atténuation entre 1550 nm et 780 nm est évaluée à partir : • Fascode, • modèle empirique de Kruse, • modèle empirique de Kim. (convection) (advection) A l'inverse de l'approche empirique les valeurs fournies par Fascode impliquent plus d'atténuation à 1550 nm.
Atténuation due au brouillard (5/9) Formules de transmission atmosphérique rapides : L’utilisation des codes de calcul de transmission atmosphérique est assez lourde • Détermination d’une formule de transmission analytique la prédiction des performances des LOA de façon plus pratique. • [BATAILLE 1992] approche polynomiale à partir de Fascode (valable au sol) pour calculer l’atténuation moléculaire et aérosolaire (maritime et rural) pour 6 l. • Hypothèses considérées : • Humidité absolue : 2 < H(g/m3) < 26 • Température : -5 < T(°c) < 35 • Visibilité : 1< V(km) < 30 Problèmes : • Modèle valide pour certaines l et 2 types d'aérosols (rural et maritime), • Extrapolation du modèle pour V < 1km (brouillard) pose beaucoup de problèmes.
Atténuation due au brouillard (6/9) Besoin de formules simples permettant l’évaluation rapide de l'atténuation de la lumière à travers le brouillard • Afin de prédire l'atténuation d'une manière simple (0,69 à 1,55 µm) sans avoir recours au code de calcul, nous fixonslet nous calculons l'atténuation à partir de Fascode pour différentes valeurs de V. • Par une régression linéaire nous cherchons à approximer ces valeurs par une expression analytique de la forme suivante : • a(l) et b(l) sont des paramètres qui dépendent de l. • Extension de la loi de Koschmieder valable à 550 nm pour d'autres l, • Relie l'atténuation et V ; atténuation inversement proportionnelle à V,
Atténuation due au brouillard (7/9) Formules de transmission atmosphérique rapides : Evaluation rapide de l'atténuation d'un rayonnement laser à travers le brouillard dans la bande spectrale 0,69 à 1,55 µm • L'atténuation d'un rayonnement laser est exprimée en fonction : • Visibilité (50 à 1000 m), • Type de brouillard; brouillard d'advection ou de convection ; (disponibles sous Fascode ) : Formules implémentées dans un logiciel développé à FT R&D Belfort et permettant de prédire la qualité de service d'une LOA
Atténuation due au brouillard (8/9) Formules de transmission atmosphérique rapides : Evaluation rapide de l'atténuation d'un rayonnement laser à travers le brouillard dans la bande spectrale 0,69 à 1,55µm ― Courbes déduites de notre modèle, Valeurs déduites de Fascode
Atténuation due au brouillard (9/9) Formules de transmission atmosphérique rapides : Limites de validité du modèle d’atténuation établi • Les modèles de brouillard deFascode sont basés uniquement sur 2 distributions de taille de particules. • Est-ce que les distributions de taille de particules utilisées par Fascode décrivent bien l’ensemble des cas réalistes ? • Pour d’autres distributions nous calculons directement l’atténuation à partir de la théorie de diffusion de Mie. • Nous disposons de distributions de taille de particules déterminées à partir des mesures [Kalashnikova et al 2002]: • Pour 3 lieux différents aux Etats Unis : Vanderberg, Arcata et Santa Maria.
Analyse de résultats obtenus sur 3 sites Modélisation de l'atténuation à partir de différentes distributions de taille de particules mesurées disponibles : Distributions de taille de particules mesurées sur 3 sites différents aux EU induisant des V=100m Coefficients d’extinction (km-1) pour les 3 distributions.
Comparaison avec Fascode Comparaison du coefficient d'extinction en fonction de l entre les modèles de Fascode et les données à Vandenberg pour une visibilités de 100 m. • Pour une large gamme de l : • La variation de l'atténuation est comprise entre les deux modèles de Fascodenotamment pour le visible et le proche IR.
Comparaison avec Fascode Dépendance spectrale de l’atténuation pour différents types de brouillard. Les coefficients d’extinction calculés à partir de Fascode et de 3 distributions de taille de particules montrent : • L'atténuation dépend de l même en présence de brouillard dense (v=100m). • Pour les ondes visibles et proche IR atténuation quand l • Les l situées entre 10,6 et 11,5 µm présentent un minimum d’atténuation (un avantage pour les transmissions dans le brouillard),
Plan de l’exposé • Introduction • Définition, intérêt et problématique des Liaisons Optiques Atmosphériques (LOA), • Propagation de la lumière dans l’atmosphère • Description physique (absorption, diffusion…), • Prédiction de l’atténuation de la lumière : • Approche empirique (modèle de Kruse, modèle de Kim), • Approche théorique (diffusion de Mie et codes de calcul " Fascode"). • Atténuation de la lumière par le brouillard • Variation de l’atténuation en fonction de la longueur d'onde, • Formules de transmission rapides à travers le brouillard (0,69 à 1,55 µm), • Comparaison du modèle de Fascode avec des conditions naturelles de brouillard. • Étude expérimentale de la transmission optique à travers le brouillard • Dispositif expérimental déployé, • Mesures et comparaison de l’atténuation avec les différents modèles analytiques. • Calcul de disponibilité d’une LOA • Logiciel permettant de prédire la qualité de service (QoS) d’une LOA • Conclusion et perspectives
Objectifs et dispositifs Pluie Neige Brume Emission 690 nm Réception 1550 nm Emission 1550 nm Réception 690 nm Poussières Nuages Brouillard Transmissomètre 27 m Station Météo L=112 m Mesure de l’atténuation Objectifs : • Etude des effets limitatifs de l’atmosphère sur les LOA, • Validation et comparaison des modèles d‘atténuation, • Comparaison de l'atténuation mesurée à plusieurs l. on dispose sur le site FT R&D de La Turbie du dispositif expérimental suivant :
Description du site Mesure de l’atténuation Vue générale de l’installation expérimentale montrant le matériel utilisé Emission 1550 nm, réception 690 nm et émetteur du transmissomètre Emission 690 nm, réception 1550 nm station météo et récepteur du transmissomètre
Description du site Mesure de l’atténuation Le site de La Turbie est implanté au sommet d'un promontoire rocheux au dessus de Monaco en face de la Méditerranée. • Brouillard maritime typique des régions côtières, • Opportunité d'effectuer les mesures d'atténuation en présence de brouillard sur une grande période de l'année (jusqu'à 30 jours de brouillard par an). Détermination expérimentale de l’atténuation à 690 et 1550 nm en fonction de la visibilité mesurée par le transmissomètre
Premiers résultats Mesure de l’atténuation Visibilité < 1 km Présence de brouillard Sensibilité du système (690 nm) pour ces deux phénomènes de brouillard Exemple des données expérimentales fournies par le transmissomètre et les liens lasers Lien laser 690 nm Transmissomètre
Premiers résultats Mesure de l’atténuation Visibilité < 1 km Sensibilité du système (1550 nm) pour ces deux phénomènes de brouillard Présence de brouillard pour une bonne période de la journée Exemple des données expérimentales fournies par le transmissomètre et les liens lasers Lien laser 1550 nm Transmissomètre
Premiers résultats Mesure de l’atténuation Comparaison de l'atténuation mesurée (690 et 1550 nm) et calculée (modèle de Kruse) en fonction de la visibilité. Atténuation du signal transmis à 1550 nm Atténuation du signal transmis à 690 nm Le manque de dynamique du système ne permet pas la détermination de l’atténuation.
Premiers résultats Mesure de l’atténuation Les deux liens laser manquent de sensibilité afin de pouvoir quantifier l’atténuation en fonction de la visibilité. • Un amplificateur limitatif est utilisé : • Le signal de référence est toujours sous évalué, • Pour 50 m ≤ V ≤ 1000 m ;une dynamique de 38 dB est nécessaire (le système ayant uniquement 16 dB), • Dispersion des mesures due a : • L’inhomogénéité du canal de transmission, • Une différence entre le canal du transmissomètre et celui des lasers. Nous avons utilisé des liens laser sur des distances plus faibles sans amplificateur limitatif et dans des canaux de transmission proche de celui du transmissomètre
Nouveau matériel Mesure de l’atténuation 112 m Container Liaison AlCom 690 et 1550 nm (première expérimentation) Arbres Transmissomètre, 27 m 850 nm, 950 nm deuxième expérimentation, 28,3 m (Antenne) 650 nm deuxième expérimentation, 28,3 m Dans le cadre du Cost 270 et en collaboration avec l’Université de Graz : Departement of communications and wave propagation • Deux liaisons LOA sont déployées : • La première opère à 850 et 950 nm, • La seconde opère à 650 nm .
Seconde configuration Mesure de l’atténuation Configuration du second déploiement des liaisons laser Vue des émetteurs (650, 850 et 950 nm) Vue des détecteurs et du transmissomètre Distance des liaisons plus courte et même canal pour le transmissomètre et les liaisons laser
Seconde configuration Mesure de l’atténuation Image des faisceaux lumineux du transmissomètre (vert) et du laser à 650 nm (rouge) prise de nuit en présence de brouillard
Seconds résultats Mesure de l’atténuation Variation de la visibilité au cours de la journée du 28/06/04 ainsi que celle de la puissance optique reçue à 650 nm Visibilité < 1 km Une meilleur dynamique des mesures de transmission Présence de brouillard pour une bonne période de la journée
Seconds résultats Mesure de l’atténuation Variation de la visibilité au cours de la journée du 28/06/04 ainsi que celle de la puissance optique reçue à 850 nm Visibilité < 1 km Une meilleur dynamique des mesures de transmission Présence de brouillard pour une bonne période de la journée
Seconds résultats Mesure de l’atténuation Variation de la visibilité au cours de la journée du 28/06/04 ainsi que celle de la puissance optique reçue à 950 nm Visibilité < 1 km Une meilleur dynamique des mesures de transmission Présence de brouillard pour une bonne période de la journée
Modèles d’atténuation Mesure de l’atténuation Comparaison de l’atténuation expérimentale mesurée (dB) à 950 nm avec les modèles d’atténuation de Kruse et de Kim
Modèles d’atténuation Mesure de l’atténuation Comparaison de l’atténuation expérimentale mesurée (dB) à 950 nm avec les modèles d’atténuation de Kruse et de Kim Modèle de Kim décrit mieux les résultats expérimentaux par rapport au modèle de Kruse
Effet du brouillard Mesure de l’atténuation Comparaison de l’atténuation spécifique expérimentale (dB/km) à 950 nm avec le modèle de Kruse, Kim et le modèle établi pour le brouillard d’advection et brouillard de convection.
Effet du brouillard Mesure de l’atténuation Comparaison de l’atténuation spécifique expérimentale (dB/km) à 950 nm avec le modèle de Kruse, Kim et le modèle établi pour le brouillard d’advection et brouillard de convection.
Effet du brouillard Mesure de l’atténuation Comparaison de l’atténuation spécifique expérimentale (dB/km) à 950 nm avec le modèle de Kruse, Kim et le modèle établi pour le brouillard d’advection et brouillard de convection.
Effet du brouillard Mesure de l’atténuation Comparaison de l’atténuation spécifique expérimentale (dB/km) à 950 nm avec le modèle de Kruse, Kim et le modèle établi pour le brouillard d’advection et brouillard de convection. Le modèle établi à partir de Fascode décrit mieux l’atténuation en présence de brouillard
Effet du brouillard Mesure de l’atténuation Comparaison de l’atténuation spécifique expérimentale (dB/km) avec le modèle de Kruse, Kim, brouillard d’advection et brouillard de convection. • Calcul de l’écart type entre l’atténuation mesurée et celle de chaque modèle pour 650, 850 et 950nm : • Modèle de brouillard de convection décrit mieux les mesures aux 3 létudiées, • Résultats validés par toutes les séries de mesures menées dans le cadre de la mission scientifique du COST 270,
Effet du brouillard Mesure de l’atténuation Comparaison de l’atténuation spécifique expérimentale (dB/km) avec le modèle de Kruse, Kim, brouillard d’advection et brouillard de convection. • Dépendance spectrale de l’atténuation due au brouillard ? • Non vérification directe de la dépendance spectrale . • Le modèle de convection que nous avons établi est celui qui est le plus proche des résultats expérimentaux, il dépend de l : • Peut on en déduire une dépendance spectrale de l’atténuation due au brouillard ?
Plan de l’exposé • Introduction • Définition, intérêt et problématique des Liaisons Optiques Atmosphériques (LOA), • Propagation de la lumière dans l’atmosphère • Description physique (absorption, diffusion…), • Prédiction de l’atténuation de la lumière : • Approche empirique (modèle de Kruse, modèle de Kim), • Approche théorique (diffusion de Mie et codes de calcul " Fascode"). • Atténuation de la lumière par le brouillard • Variation de l’atténuation en fonction de la longueur d'onde, • Formules de transmission rapides à travers le brouillard (0.69 à 1,55 µm), • Comparaison du modèle de Fascode avec des conditions naturelles de brouillard. • Étude expérimentale de la transmission optique à travers le brouillard • Dispositif expérimental déployé, • Mesures et comparaison de l’atténuation avec les différents modèles analytiques. • Calcul de disponibilité d’une LOA • Logiciel permettant de prédire la qualité de service (QoS) d’une LOA. • Conclusion et perspectives