770 likes | 869 Views
Massive star feedback – from the first stars to the present. Jorick Vink (Keele University). Outline. Why predict Mass-loss rates? (as a function of Z) Monte Carlo Method Results OB, B[e], LBV & WR winds Cosmological implications? Look into the Future. Why predict Mdot ?.
E N D
Massive star feedback – from the first stars to the present Jorick Vink (Keele University)
Outline • Why predict Mass-loss rates? (as a function of Z) • Monte Carlo Method • Results OB, B[e], LBV & WR winds • Cosmological implications? • Look into the Future
Why predict Mdot ? • Energy & Momentum input into ISM
Massive star feedback NGC 3603
Why predict Mdot ? • Energy & Momentum input into ISM
Why predict Mdot ? • Energy & Momentum input into ISM • Stellar Evolution
Evolution of a Massive Star B[e] O
Why predict Mdot ? • Energy & Momentum input into ISM • Stellar Evolution • Explosions: SN, GRBs
Progenitor for Collapsar model • Rapidly rotating • Hydrogen-free star (Wolf-Rayet star) • But…… Woosley (1993)
Progenitor for Collapsar model • Rapidly rotating • Hydrogen-free star (Wolf-Rayet star) • But…… Stars have winds… Woosley (1993)
Why predict Mdot ? • Energy & Momentum input into ISM • Stellar Evolution • Explosions: SN, GRBs • Final product: Neutron star, Black hole
Why predict Mdot ? • Energy & Momentum input into ISM • Stellar Evolution • Explosions: SN, GRBs • Final product: Neutron star, Black hole • X-ray populations in galaxies
Why predict Mdot ? • Energy & Momentum input into ISM • Stellar Evolution
Why predict Mdot ? • Energy & Momentum input into ISM • Stellar Evolution • Stellar Spectra
Why predict Mdot ? • Energy & Momentum input into ISM • Stellar Evolution • Stellar Spectra • Analyses of starbursts
Why predict Mdot ? • Energy & Momentum input into ISM • Stellar Evolution • Stellar Spectra • Analyses of starbursts • Ionizing Fluxes
Why predict Mdot ? • Energy & Momentum input into ISM • Stellar Evolution • Stellar Spectra
Why predict Mdot ? • Energy & Momentum input into ISM • Stellar Evolution • Stellar Spectra • Stellar “Cosmology”
The First Stars Credit: V. Bromm
The Final products of Pop III stars (Heger et al. 2003)
Why predict Mdot ? • Energy & Momentum input into ISM • Stellar Evolution • Stellar spectra • “Stellar cosmology”
Goal: quantifying mass loss a function of Z (and z) What do we know at solar Z ?
Radiation-driven wind by Lines Lucy & Solomon (1970) Castor, Abbott & Klein (1975) = CAK Wind STAR Fe dM/dt = f (Z, L, M, Teff)
Radiation-driven wind by Lines Abbott & Lucy (1985) dM/dt = f (Z, L, M, Teff)
Momentum problem in O star winds A systematic discrepancy
Approach: • Assume a velocity law • Compute model atmosphere, ionization stratification, level populations • Monte Carlo to compute radiative force
Monte Carlo Mass loss comparison (Vink et al. 2000) No systematic discrepancy anymore !
Monte Carlo Mass-loss rates dM/dt increases by factor 3-5 (Vink et al. 1999)
HOT Fe IV low dM/dt high Vinf Low density COOL Fe III high dM/dt low Vinf High density The bi-stability Jump
Stars should pass the bistable limit • During evolution from O B • LBVs on timescales of years
LBVs in the HRD Smith, Vink & de Koter (2004)
The mass loss of LBVs Models Data Stahl et al. (2001) Vink & de Koter (2002)
Stars should pass the bistable limit • During evolution from O B • LBVs on timescales of years Implications for circumstellar medium (CSM) Mass-loss rate up ~ 2 wind velocity down ~ 2 CSM density variations ~ 4
SN-CSM interaction radio Weiler et al. (2002)
Mass Loss Results from Radio SNe OB star? WR?
SN 2001ig & 2003bg 2003bg 2001ig Soderberg et al. (2006) Ryder et al. (2004)
Progenitors • AGB star • Binary WR system • WR star • LBV
Progenitors • AGB star • Binary WR system • WR star • LBV Kotak & Vink (2006)
Assumptions in line-force models • Stationary • One fluid • Spherical
Asphericity in LBV: HR CAR (Davies, Oudmaijer & Vink 2005) SURVEY: asphericity found in 50%
Variable polarization in AG CAR (Davies, Oudmaijer & Vink 2005) RANDOM: CLUMPS!!
Assumptions in line-force models • Stationary • One fluid • Spherical • Homogeneous, no clumps