230 likes | 307 Views
TEAM HOMEWORK #9 Evolving an XOR Network. Dr. Roger S. Gaborski. Modified Teams.
E N D
TEAM HOMEWORK #9Evolving an XOR Network Dr. Roger S. Gaborski Roger S. Gaborski
Modified Teams • Team 1 Carpenter (Taylor) and EylerTeam 2 Mesh and SenTeam 3 Carpenter (Michael) and CooperTeam 4 Dean and Koon, Team 5 Bravo and Patel, Team 6 Hu and Louzolo-Kimbembe, Team 7 Goetz and SchulzeTeam 8 Kamat and Rajkumar, Team 9 Jain and PaulTeam 10 Sivov and SmithTeam 11Stokes and MillerTeam 12 Powar and MurphyTeam 13 Sasarak and Sun Roger S. Gaborski
2 Neuron XOR Network • Two inputs applied to both neurons • Both neurons have bias terms Roger S. Gaborski
2 Neuron XOR Network with BIAS w10 w20 w22 w11 w12 N1 N2 x2 Notation: wto, from W1,2 To neuron 1 From neuron 2 w21 x1 w1in1 w1in2 w2in2 w2in1 Iin1 Iin2 Roger S. Gaborski
Weight Matrix w1in1 w1in2 w10 w11 w12 Iin1 input1 w2in1 w2in2w20 w21 w22 * Iin2 input2 1 bias x1 output N1 x2 output N2 Roger S. Gaborski
Weight Matrix – no self connections (w11 , w22 )no recurrent feedback connections (w12) w1in1 w1in2 w100 0 Iin1 input1 w2in1 w2in2w20 w210 * Iin2 input2 1 bias x1 output N1 x2 output N2 Roger S. Gaborski
Weight Matrix Valuesno self connections (w11 , w22 )no recurrent feedback connections (w12) -2.19 -2.20 .139 0 0 Iin1 -2.81 -2.703.90 -31.8 0 * Iin2 1 x1 x2 Roger S. Gaborski
Non-linear Fuction, State Update -2.19 -2.20 .139 0 0 Iin1 -2.81 -2.703.90 -31.8 0 * Iin2 1 = x1 x1 x2 x2 tanh Roger S. Gaborski
Two Time Cycles Required • 1. Apply inputs, calculates update X vector. x1 is correct at this time, but x2 was calculated with x1=0. • 2. Update x1 and x2 • Apply same inputs second time, this time x2 is correct. • Output x2 Roger S. Gaborski
Initial Weight Matrix with random numbers, [ -β, +β] r1 r2 r30 0 Iin1 r4 r5r6 r7 0 * Iin2 1 = x1 x1 x2 x2 sigmoid -After two passes of the input data calculate error between updated state matrix and correct values. Calculate total error based on all four input pairs. -Use one of the evolutionary methods discussed in class to find correct weights. Roger S. Gaborski
Results for XOR err1 = 1.7605e-011 Iin1 = 1 Iin2 = 1 x2out = 1.92954e-021 err1 = 1.7605e-011 Iin1 = 1 Iin2 = 0 x2out = 1 err1 = 1.7605e-011 Iin1 = 0 Iin2 = 1 x2out = 1 err1 = 1.7605e-011 Iin1 = 0 Iin2 = 0 x2out = 3.92286e-020 Roger S. Gaborski
bestError =2.5679e-015 Roger S. Gaborski
BIIS Assignment #9 TEAM ASSIGNMENT • PART ONE: HOMEWORK REVISION (Re-write algorithm with new team members) • Correct/Update GA Solutions • Minimum Performance Results • 30 long vector : Score 30 • 1000 long vector : Score 1000 • 10000 long vector : Minimum score 8500 Roger S. Gaborski
BIIS Assignment #9 TEAM ASSIGNMENT • PART TWO • Implement an algorithm that will evolve the weight matrix W for the XOR problem. • Follow guideline given, (see previous lectures , also) • Use the Genetic Algorithm you wrote and the following evolutionary algorithms discussed in class to solve the problem: • Simulated Annealing (TEAMS 1, 2, 3 and 4) • TabuSearch (TEAMS 5, 6 and 7) • Evolution Strategy ES(µ,λ) (TEAMS 8, 9 and 10 • Evolution Strategy ES(µ+λ) (TEAMS 11, 12and 13) • You must write your own programs • Program name:EvolveXOR_GAyourNames.m, EvolveXOR_TABUyournames.m, etc • Use same naming convention for other functions/scripts you may need • Compare the two methods in your writeup Roger S. Gaborski
Output of program • Print to screen: • Error results for XOR inputs as shown on slide 10 • A plot of the error versus generation (slide 11) • Final weight matrix • Submit programs and a detailed analysis of your program and your results. Address questions, such as, did it always converge to the correct answer, how many generations, population size, how were matrices modified, etc. • Email to course account Roger S. Gaborski
Additional Information4 Neuron Network, input to N1 and N2 only err1 = 1.71684e-008 Iin1 = 1 Iin2 = 1 x2out = 2.21501e-019 err1 = 1.71684e-008 Iin1 = 1 Iin2 = 0 x2out = 1 err1 = 1.71684e-008 Iin1 = 0 Iin2 = 1 x2out = 1 err1 = 1.71684e-008 Iin1 = 0 Iin2 = 0 x2out = 1.03917e-035 W = 15.3607 13.5668 -3.2710 0 0 0 0 -9.4263 8.1640 -6.8868 -0.1954 0 0 0 0 0 13.5103 7.9710 1.6977 0 0 0 0 0.7986 7.2134 16.4839 -16.9090 0 bestError = 2.2150e-019 Roger S. Gaborski
Two Classes Roger S. Gaborski
4 Neuron Network – 2 Class Problem w40 w30 w10 w20 N1 N2 w32 N3 N4 w43 w21 x1 x2 x4 x3 w1in1 w1in2 w42 w31 w2in1 w41 w2in2 Iin1 Iin2 Roger S. Gaborski
err1 = 0 Iin1 = -24.0107 Iin2 = -62.5499 out = 0 err1 = 0 Iin1 = -48.3297 Iin2 = -55.5969 out = 0 err1 = 0 Iin1 = -70.2611 Iin2 = -38.9464 out = 0 err1 = 0 Iin1 = -85.9289 Iin2 = -13.6098 out = 0 err1 = 0 Iin1 = -91.9457 Iin2 = 17.8724 out = 0 err1 = 0 Iin1 = -86.0025 Iin2 = 51.6755 out = 0 err1 = 0 Iin1 = -67.3373 Iin2 = 83.1546 out = 0 err1 = 0 Iin1 = -37.0062 Iin2 = 107.474 out = 0 err1 = 0 Iin1 = 2.10011 Iin2 = 120.315 out = 0 err1 = 0 Iin1 = 45.5127 Iin2 = 118.565 out = 0 err1 = 0 Iin1 = 24.0107 Iin2 = 62.5499 out = 1 err1 = 0 Iin1 = 48.3297 Iin2 = 55.5969 out = 1 err1 = 0 Iin1 = 70.2611 Iin2 = 38.9464 out = 1 err1 = 0 Iin1 = 85.9289 Iin2 = 13.6098 out = 1 err1 = 0 Iin1 = 91.9457 Iin2 = -17.8724 out = 1 err1 = 0 Iin1 = 86.0025 Iin2 = -51.6755 out = 1 err1 = 0 Iin1 = 67.3373 Iin2 = -83.1546 out = 1 err1 = 0 Iin1 = 37.0062 Iin2 = -107.474 out = 1 err1 = 0 Iin1 = -2.10011 Iin2 = -120.315 out = 1 err1 = 0 Iin1 = -45.5127 Iin2 = -118.565 out = 1 Roger S. Gaborski
W = 26.4920 -2.1275 4.5634 0 0 0 0 -0.2518 0.4017 18.9732 -38.0695 0 0 0 0 0 9.8227 22.7548 -47.4532 0 0 0 0 -49.8367 102.8554 -256.5946 79.9826 0 bestError = 0 Roger S. Gaborski
err1 = 0 Iin1 = -24.0107 Iin2 = -62.5499 out = 0 err1 = 0 Iin1 = -48.3297 Iin2 = -55.5969 out = 0 err1 = 0 Iin1 = -70.2611 Iin2 = -38.9464 out = 0 err1 = 0 Iin1 = -85.9289 Iin2 = -13.6098 out = 0 err1 = 0 Iin1 = -91.9457 Iin2 = 17.8724 out = 0 err1 = 0 Iin1 = -86.0025 Iin2 = 51.6755 out = 0 err1 = 0 Iin1 = -67.3373 Iin2 = 83.1546 out = 0 err1 = 0 Iin1 = -37.0062 Iin2 = 107.474 out = 0 err1 = 0 Iin1 = 2.10011 Iin2 = 120.315 out = 0 err1 = 0 Iin1 = 45.5127 Iin2 = 118.565 out = 0 err1 = 0 Iin1 = 24.0107 Iin2 = 62.5499 out = 1 err1 = 0 Iin1 = 48.3297 Iin2 = 55.5969 out = 1 err1 = 0 Iin1 = 70.2611 Iin2 = 38.9464 out = 1 err1 = 0 Iin1 = 85.9289 Iin2 = 13.6098 out = 1 err1 = 0 Iin1 = 91.9457 Iin2 = -17.8724 out = 1 err1 = 0 Iin1 = 86.0025 Iin2 = -51.6755 out = 1 err1 = 0 Iin1 = 67.3373 Iin2 = -83.1546 out = 1 err1 = 0 Iin1 = 37.0062 Iin2 = -107.474 out = 1 err1 = 0 Iin1 = -2.10011 Iin2 = -120.315 out = 1 err1 = 0 Iin1 = -45.5127 Iin2 = -118.565 out = 1 Roger S. Gaborski
W = 32.4673 -3.1186 -28.6143 0 0 0 0 0.1022 0.7105 54.0334 -105.7453 0 0 0 0 0 24.4383 -25.4437 7.7179 0 0 0 0 15.4590 -1.5397 -150.7273 -7.5315 0 bestError = 0 Roger S. Gaborski