180 likes | 382 Views
Digital Design Lecture 10. Sequential Design. State Reduction. Equivalent Circuits Identical input sequence Identical output sequence Equivalent States Same input same output Same input same or equivalent next state. Next State x=0 x=1 a b c d a d e f a f
E N D
Digital DesignLecture 10 Sequential Design
State Reduction • Equivalent Circuits • Identical input sequence • Identical output sequence • Equivalent States • Same input same output • Same input same orequivalent next state
Next Statex=0 x=1 a b c d a d e f a f g f a f Outputx=0 x=1 0 0 0 0 0 0 0 1 0 1 0 1 0 1 • g & e equivalent, f & d equivalent State a b c d e f g
State Assignment State a b c d e Binary 000 001 010 011 100 Gray Code 000 001 011 010 110 One-Hot 00001 00010 00100 01000 10000
Reduced State Table:Binary State Assignment Next Statex=0 x=1 000 001 010 011 000 011 100 011 000 011 Outputx=0 x=1 0 0 0 0 0 0 0 1 0 1 State 001 010 011 100 101 Table 5-10
Design Procedure • Develop State Diagram From Specs • Reduce States • Assign Binary values to States • Write Binary-coded State Table • Choose Flip-Flops • Derive Input and Output Equations • Draw the Logic Diagram
Develop State Diagram:Sequence Detector • Detect 3 or more 1s in sequence(a Moore Model)
D Flip-Flop Input Equations StateA B 0 00 00 10 11 01 01 11 1 Input x 0 1 0 10101 Next StateA B 0 00 10 01 00 01 10 01 1 Output y 0 0 0 00011 A(t+1) = DA(A,B,x) = (3,5,7) B(t+1) = DB(A,B,x) = (1,5,7) y(A,B,x) = (6,7) Input equations come directly from the next state in D Flip-Flop design
JK Flip-Flop T Flip-Flop Q(t) 0 0 1 1 Q(t+1) 0 1 0 1 J 01XX K XX10 Q(t) 0 0 1 1 Q(t+1) 0 1 0 1 T 0110 Using JK or T Flip-Flops 1. Develop Excitation Table Using Excitation Tables Table 5-12
State Table: JK Flip-Flop Inputs PresentState Input NextState Flip-Flop Inputs A 00001111 B 00110011 x 00001111 A 00101110 B 01010110 JA 00101110 KA 01010110 JB 00101110 KB 01010110 Table 5-13
3-Bit Counter State Table Present State Next State Flip-Flop Inputs A2 00001111 A1 00110011 A0 01010101 A2 00011110 A1 01100110 A0 10101010 TA2 00010001 TA1 01010111 TA0 11111111