1 / 18

Digital Design Lecture 10

Digital Design Lecture 10. Sequential Design. State Reduction. Equivalent Circuits Identical input sequence Identical output sequence Equivalent States Same input  same output Same input  same or equivalent next state. Next State x=0 x=1 a b c d a d e f a f

ave
Download Presentation

Digital Design Lecture 10

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Digital DesignLecture 10 Sequential Design

  2. State Reduction • Equivalent Circuits • Identical input sequence • Identical output sequence • Equivalent States • Same input  same output • Same input  same orequivalent next state

  3. Next Statex=0 x=1 a b c d a d e f a f g f a f Outputx=0 x=1 0 0 0 0 0 0 0 1 0 1 0 1 0 1 • g & e equivalent, f & d equivalent State a b c d e f g

  4. State Assignment State a b c d e Binary 000 001 010 011 100 Gray Code 000 001 011 010 110 One-Hot 00001 00010 00100 01000 10000

  5. Reduced State Table:Binary State Assignment Next Statex=0 x=1 000 001 010 011 000 011 100 011 000 011 Outputx=0 x=1 0 0 0 0 0 0 0 1 0 1 State 001 010 011 100 101 Table 5-10

  6. Design Procedure • Develop State Diagram From Specs • Reduce States • Assign Binary values to States • Write Binary-coded State Table • Choose Flip-Flops • Derive Input and Output Equations • Draw the Logic Diagram

  7. Develop State Diagram:Sequence Detector • Detect 3 or more 1s in sequence(a Moore Model)

  8. D Flip-Flop Input Equations StateA B 0 00 00 10 11 01 01 11 1 Input x 0 1 0 10101 Next StateA B 0 00 10 01 00 01 10 01 1 Output y 0 0 0 00011 A(t+1) = DA(A,B,x) = (3,5,7) B(t+1) = DB(A,B,x) = (1,5,7) y(A,B,x) = (6,7) Input equations come directly from the next state in D Flip-Flop design

  9. Simplified Boolean Equations

  10. Sequence Detector: D Flip-Flops

  11. JK Flip-Flop T Flip-Flop Q(t) 0 0 1 1 Q(t+1) 0 1 0 1 J 01XX K XX10 Q(t) 0 0 1 1 Q(t+1) 0 1 0 1 T 0110 Using JK or T Flip-Flops 1. Develop Excitation Table Using Excitation Tables Table 5-12

  12. State Table: JK Flip-Flop Inputs PresentState Input NextState Flip-Flop Inputs A 00001111 B 00110011 x 00001111 A 00101110 B 01010110 JA 00101110 KA 01010110 JB 00101110 KB 01010110 Table 5-13

  13. Maps for J and K Input Equations

  14. JK Flip-Flop Sequence Detector

  15. Synthesis Using T Flip-Flops:Designing a Counter

  16. 3-Bit Counter State Table Present State Next State Flip-Flop Inputs A2 00001111 A1 00110011 A0 01010101 A2 00011110 A1 01100110 A0 10101010 TA2 00010001 TA1 01010111 TA0 11111111

  17. 3-Bit Counter Karnaugh Maps

  18. The 3-Bit Counter

More Related