280 likes | 548 Views
F erroelectrics: Towards Smaller Dimensions and Complex Structure. Marija Kosec. Jo ž ef Stefan Institute Jamova 39 1000 Ljubljana Slovenija marija.kosec@ijs.si. Electronic Ceramics Department , K-5 Head: Prof. Dr. Marija Kosec Staff: 20: 5 PhD, 4 Post-doc, 8 PhD students,
E N D
Ferroelectrics: Towards Smaller Dimensions • and Complex Structure • Marija Kosec Jožef Stefan Institute Jamova 39 1000 Ljubljana Slovenija marija.kosec@ijs.si
Electronic Ceramics Department, K-5 • Head: Prof. Dr. Marija Kosec • Staff:20: 5 PhD, 4 Post-doc,8 PhD students, • 2 ing, 1 technician + part–time: • Research Activities • Materials: • Piezoelectrics:Pb(Zr,Ti)O3 (PZT), • Relaksors: Pb (Mg1/3Nb2/3)O3 - PbTiO3 (PMN-PT), • Lead free piezoelectrics:(K,Na)NbO3 (KNN), • Tunable ferroelectrics: (Ba, Sr)TiO3K(Nb,Ta)O3, • Dielectrics: CuCa3Ti4O12 (CCTO) • Oxide conductors: (La,Sr)CoO3 (LSCO), La-ruthenates, • Multiferoic: BiFeO3 ( BaO, PbO), LaMnO3, • ZnO
Processing: How to get extrem: properties, design, size…. • Nano-powders: • sol-gel synthesis(PZT) • mechanically activated synthesis (PMN-PT, KNbO3, NaNbO3,KNN) Thin films by Chemical Solution Deposition (CSD) (PZT, PMN-PT, KNN, KNT, BST,CCTO) Thick film: Screen printing (PZT, PMN-PT, KNN) Electrophoresis (PZT) Ink-jet printing (ZnO) Bulk (KNN), Single crystal: KNN Devices: C-MEMS Medical transducers Pressure sensors
Ferroelectric ceramic materials Ferroelectric and dielectric Piezoelectric A: Pb B: Ti,Zr Tunable Polar structur, Electric dipols
A O B Feroelectric ceramics: Composition BaTiO3 PbTiO3 (PT) Pb(Zr,Ti)O3 (PZT), (Pb,La)(Zr,Ti)O3 (PLZT) Pb(Mg1/3Nb2/3)O3 (PMN) Pb(Mg1/3Nb2/3)O3 – PbTiO3 (PMN-PT) Pb(Zn1/3Nb2/3)O3 – PbTiO3 (PZN-PT), (PMN-PZN-PT) PbSc1/2Ta 1/2 O3 high lead content (~60w%) ecological problems Since last ten years: searching for lead free materials
lead-free ferroelectric materials: Sodium potassium niobate (K,Na)NbO3s.s. (KNN). KNbO3-NaNbO3phase diagram The best piezoelectric response for the compositions close to the MPB:KNN50/50 B.Malič, J.Bernard, J.Holc, D.Jenko, M.Kosec, J.Eur.Cer.Soc.,(2005) 2707
Bulk: mm, cm range • Ferroelectrics: Towards • Smaller Dimensions • and Complex Structure Courtesy of Ferroperm Piezoceramics S/A Thick films >1mm Thin films < 1mm 100 nm 100 nm Cross-section SEM of 32Mbit NFRAM, from: H.S.Joo, Integr. Ferroel., 48(2002), 119.
Thick film processing powder synthesis: Tem. PbO+ZrO2+TiO2 Pb(Zr,Ti)O3) Chem.reactions crytical Shaping clamping Firing Thick films >1mm Thick film
Powder synth. shaping firing thick film Thick film procesing screen printing ink jet printing electrophoretic deposition
1 1 2 3 2 3 modeling Marina Santo
LTCC/Au/PZT/ Au LTCC/PZT barriere/ Au/PZT/Au Microstructure after firing 1h850oC.
displacement 200V=3µm dimensions 12.0 × 4.0 × 0.22 mm - 40µm thick PZT
Bulk: mm, cm range Courtesy of Ferroperm Piezoceramics S/A Thick films >1mm Thin films < 1mm 100 nm 100 nm Cross-section SEM of 32Mbit NFRAM, from: H.S.Joo, Integr. Ferroel., 48(2002), 119.
Chemical Solution Deposition (CSD) of Pb(Zr,Ti)O3 PZT Synthesis Solution- precursor:Pb,Zr,Ti Spinnig wet film substrate Drying, 200 C dry film substrate Pyrolysis, 350 C dense, amorphous film substrate Crystallization, 600 C dense, crystalline film substrate
O CH2 n-1(RO) M O CH2 R Synthesis of PZT solution precursor Pb(OAc)2+x Zr(O R)4 +(1-x) Ti(O R)4 + CH3-O-C2H4-OH Reflux destilation PZT-solution (sol) spinning Pt/Si –substrat drying@ 200oC pyrolysis@ 350oC crystallization@ 600oC PZT thin film 2-methoxyethanol method CH3-O-C2H4-OH Turova, Turevskaya, Kessler, Yanovskaya, 2002. Budd, Dey, Payne, 1985
Substrate 100 nm Pt/ 10 nm TiO2/SiOx/Si Zr(n-OBu)4 Ti(n-OBu)4 Pb(OAc)2 / PbO + Spin-coating Drying, 200 oC, 2 min Heating, 400 oC (hot-plate) CH3-O-CH2CH2-OH 4x 4x Dissolution Reflux (2 h) Distillation Sol (CM=0,5) Single-step 1×(400 oC, 30 min) 1×(400 oC, 60 min) Multi-step 4×(400 oC, 5 min) Excess of PbO: 10 mole %
100 nm Columnar microstructure Equiaxed grains 100 nm Design of microstructure by the constant orientation gives a unique possibilities to study microstructure-properties relationship Orientation:constant Properties microstructure M. Mandeljc, M. Kosec, B. Malič, Z. Samardžija, Integrated Ferroelectrics, 30 (2000), 149. M. Mandeljc, M. Kosec, B. Malič, Z. Samardžija, Integrated Ferroelectries, 41 (2001), 163.
Design of orientation by lead source ? XRD spectra of PZT 30/70 films: effect of lead-source, 4 x (200oC, 2 min.+ 400oC, 5 min.)
Crystallization mechanism 400oC 1-15 min
Crystallization mechanism How can be formed? From Pb in Pt! Pb? From PbO in PZT How? Reduction? How? Oxidation of organic C+O2= CO2 2H2+ O2 =2 H2O Important: amorphous phase must contain enough organic. It is provide by the choice of precursors.
Reflect Array antenna Waveguide with metal iris Unit cell of radiating element Phase shifting components RETINA: Reliable, tuneable and inexpensive antennas by collective fabrication processes, EU, 6th FP, Thematic priority: Aeronautics and SpaceEADS (D)TAS (F)IMEC (B)EPFL (CH)COV (F)ESIEE (F)JSI (SI)HYB (SI)
DIELECTRIC CONSTANT BST 30/70 Compositions with a higher Ba-content • At RT: • Higher permittivity for solid solutions with a higher Ba/Sr ratio but also a higher T-dependence of e. • Expected: higher tunability Temperature dependence of permittivity for BST ceramics Tagantsev et al., J. Electroceramics, 2003
Ba0.3Sr0.7TiO3(BST) Ba-acetate + Sr-acetate 0.30 Ba (CH3COO)2 +0.70 Sr(CH3COO)2 Dissolved in acetic acid (100 %), R.T. CH3COOH + Ti n-propoxide Ti(OC3H7)4 Dissolved in 2-methoxyethanol, R.T., inert atmospere CH3-O-CH2CH2OH Mixing at 60oC, inert atmospere BST-precursor solution (0.25M, 0.4 M) Alumina substrate (25.4 x 25.4 mm2) polished, 99.6 %, ε ≈ 9.8) Spinning Pyrolysis Crystallization
Materials characterization: Phase composition: XRD (CuKa) Microstructure: AFM, FE-SEM Grain size: lineal intercept (~100 grains) Dielectric characterization: Air-gapped capacitors (0.75 x 1.5 mm2) Cr/Au electrodes by lift-off photolithography C (V): 0V+200V0V−200V0V at 1 MHz (JSI)and 8 GHz (V. Cherman, EPFL) Gap (2-10 mm) Au/Cr electrode BST film Alumina substrate Substrate: 25.4 mm x 25.4 mm Vendik model
900 °C, 15 min. 700 °C, 15 min. 100 nm 100 nm 700 °C, 60 min. 900 °C, 60 min. 700 °C, 60 min. 900 °C, 60 min. 100 nm 100 nm Microstructure: effect of annealing conditions Grain size: 70 nm T increases Grain size: 40–45nm Grain size: 80 nm FE-SEM images of BST films on alumina annealedat 700 and 900 °C.
900oC 100 nm 700oC 100 nm e = 722 ± 50 ne = 1.93 e = 345 ± 35ne = 1.49 C-V response of BST filmon alumina annealed at 700°Cand 900 oC for 60 min. 1MHz, RT, gap width: 8.5 ± 1mm. Left: surface microstructures of BST films.
Thanks Dr. BarbaraMalič Dr. Janez Holc Dr.Marko Hrovat Dr.Danjela Kuščer-Hrovatin Dr.Andreja Benčan Dr. Tadej Rojac Dipl. ing.Silvo Drnovšek Dipl. ing.Jena Cilenšek Ing. Srečko Maček Darko Belavič, dipl. ing Dr. Marina Santo- Zarnik Dr. Mišo Vukadinović Mitja Jerlah Dr. Goran Dražič Dr.Stojan Stavber Dr. Vid Bobnar Prof. Adrijan Levstik Prof. Nava Setter, EPFL,Lausanne Prof. Rainer Waser, RWTH Aachen Mrs. Wanda Wolny, Ferroperm Piezoceramics, Copenhagen ARRS, EU:LEAF, MINUET, MIND, RETINA Thank to you!