180 likes | 774 Views
Resolution in Propositional and First-Order Logic. Inference rules. Logical inference creates new sentences that logically follow from a set of sentences (KB) An inference rule is sound if every sentence X it produces when operating on a KB logically follows from the KB
E N D
Inference rules • Logical inference creates new sentences that logically follow from a set of sentences (KB) • An inference rule is sound if every sentence X it produces when operating on a KB logically follows from the KB • i.e., inference rule creates no contradictions • An inference rule is complete if it can produce every expression that logically follows from (is entailed by) the KB. • Note analogy to complete search algorithms
Sound rules of inference • Here are some examples of sound rules of inference • Each can be shown to be sound using a truth table RULEPREMISE CONCLUSION Modus Ponens A, A B B And Introduction A, B A B And Elimination A B A Double Negation A A Unit Resolution A B, B A Resolution A B, B C A C
Resolution • Resolution is a valid inference rule producing a new clause implied by two clauses containing complementary literals • A literal is an atomic symbol or its negation, i.e., P, ~P • Amazingly, this is the only interference rule you need to build a sound and complete theorem prover • Based on proof by contradiction and usually called resolution refutation • The resolution rule was discovered by Alan Robinson (CS, U. of Syracuse) in the mid 60s
Resolution • A KB is actually a set of sentences all of which are true, i.e., a conjunction of sentences. • To use resolution, put KB into conjunctive normal form (CNF), where each sentence written as a disjunc- tion of (one or more) literals Example • KB: [PQ , QRS] • KB in CNF: [~PQ , ~QR , ~QS] • Resolve KB(1) and KB(2) producing: ~PR (i.e., PR) • Resolve KB(1) and KB(3) producing: ~PS (i.e., PS) • New KB: [~PQ , ~Q~R~S , ~PR , ~PS] Tautologies (AB)↔(~AB) (A(BC)) ↔(AB)(AC)
Soundness of the resolution inference rule • From the rightmost three columns of this truth table, we can see that • (α β) (β γ) ↔ (α γ) • is valid (i.e., always true regardless of the truth values assigned to α,β and γ
Resolution • Resolution is a sound and complete inference procedure for unrestricted FOL • Reminder: Resolution rule for propositional logic: • P1 P2 ... Pn • P1 Q2 ... Qm • Resolvent: P2 ... Pn Q2 ... Qm • We’ll need to extend this to handle quantifiers and variables
Resolution covers many cases • Modes Ponens • from P and P Q derive Q • from P and P Q derive Q • Chaining • from P Q and Q R derive P R • from ( P Q) and ( Q R) derive P R • Contradiction detection • from P and P derive false • from P and P derive the empty clause (=false)
Resolution in first-order logic • Given sentences in conjunctive normal form: • P1 ... Pn and Q1 ... Qm • Pi and Qi are literals, i.e., positive or negated predicate symbol with its terms • if Pj and Qkunify with substitution list θ, then derive the resolvent sentence: subst(θ, P1…Pj-1Pj+1…Pn Q1…Qk-1Qk+1…Qm) • Example • from clause P(x, f(a)) P(x, f(y)) Q(y) • and clause P(z, f(a)) Q(z) • derive resolvent P(z, f(y)) Q(y) Q(z) • Using θ = {x/z}
A resolution proof tree ~P(w) v Q(w) ~Q(y) v S(y) ~True v P(x) v R(x) P(x) v R(x) ~P(w) v S(w) ~R(w) v S(w) S(x) v R(x) S(A)
Resolution refutation • Given a consistent set of axioms KB and goal sentence Q, show that KB |= Q • Proof by contradiction: Add Q to KB and try to prove false, i.e.: (KB |- Q) ↔ (KB Q |- False) • Resolution is refutation complete: it can establish that a given sentence Q is entailed by KB, but can’t (in general) generate all logical consequences of a set of sentences • Also, it cannot be used to prove that Q is not entailed by KB • Resolution won’t always give an answer since entailment is only semi-decidable • And you can’t just run two proofs in parallel, one trying to prove Q and the other trying to prove Q, since KB might not entail either one
Resolution example • KB: • allergies(X) sneeze(X) • cat(Y) allergicToCats(X) allergies(X) • cat(felix) • allergicToCats(mary) • Goal: • sneeze(mary)
Refutation resolution proof tree allergies(w) v sneeze(w) cat(y) v ¬allergicToCats(z) allergies(z) w/z cat(y) v sneeze(z) ¬allergicToCats(z) cat(felix) y/felix sneeze(z) v ¬allergicToCats(z) allergicToCats(mary) z/mary sneeze(mary) sneeze(mary) Notation old/new false negated query