1 / 15

Resolution in Propositional and First-Order Logic

Resolution in Propositional and First-Order Logic. Inference rules. Logical inference creates new sentences that logically follow from a set of sentences (KB) An inference rule is sound if every sentence X it produces when operating on a KB logically follows from the KB

avel
Download Presentation

Resolution in Propositional and First-Order Logic

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Resolution in Propositional and First-Order Logic

  2. Inference rules • Logical inference creates new sentences that logically follow from a set of sentences (KB) • An inference rule is sound if every sentence X it produces when operating on a KB logically follows from the KB • i.e., inference rule creates no contradictions • An inference rule is complete if it can produce every expression that logically follows from (is entailed by) the KB. • Note analogy to complete search algorithms

  3. Sound rules of inference • Here are some examples of sound rules of inference • Each can be shown to be sound using a truth table RULEPREMISE CONCLUSION Modus Ponens A, A  B B And Introduction A, B A  B And Elimination A  B A Double Negation A A Unit Resolution A  B, B A Resolution A  B, B  C A  C

  4. Soundness of modus ponens

  5. Resolution • Resolution is a valid inference rule producing a new clause implied by two clauses containing complementary literals • A literal is an atomic symbol or its negation, i.e., P, ~P • Amazingly, this is the only interference rule you need to build a sound and complete theorem prover • Based on proof by contradiction and usually called resolution refutation • The resolution rule was discovered by Alan Robinson (CS, U. of Syracuse) in the mid 60s

  6. Resolution • A KB is actually a set of sentences all of which are true, i.e., a conjunction of sentences. • To use resolution, put KB into conjunctive normal form (CNF), where each sentence written as a disjunc- tion of (one or more) literals Example • KB: [PQ , QRS] • KB in CNF: [~PQ , ~QR , ~QS] • Resolve KB(1) and KB(2) producing: ~PR (i.e., PR) • Resolve KB(1) and KB(3) producing: ~PS (i.e., PS) • New KB: [~PQ , ~Q~R~S , ~PR , ~PS] Tautologies (AB)↔(~AB) (A(BC)) ↔(AB)(AC)

  7. Soundness of the resolution inference rule • From the rightmost three columns of this truth table, we can see that • (α  β)  (β  γ) ↔ (α  γ) • is valid (i.e., always true regardless of the truth values assigned to α,β and γ

  8. Resolution • Resolution is a sound and complete inference procedure for unrestricted FOL • Reminder: Resolution rule for propositional logic: • P1 P2 ... Pn • P1 Q2 ... Qm • Resolvent: P2 ... Pn Q2 ... Qm • We’ll need to extend this to handle quantifiers and variables

  9. Resolution covers many cases • Modes Ponens • from P and P  Q derive Q • from P and  P  Q derive Q • Chaining • from P  Q and Q  R derive P  R • from ( P  Q) and ( Q  R) derive  P  R • Contradiction detection • from P and  P derive false • from P and  P derive the empty clause (=false)

  10. Resolution in first-order logic • Given sentences in conjunctive normal form: • P1 ...  Pn and Q1 ...  Qm • Pi and Qi are literals, i.e., positive or negated predicate symbol with its terms • if Pj and Qkunify with substitution list θ, then derive the resolvent sentence: subst(θ, P1…Pj-1Pj+1…Pn Q1…Qk-1Qk+1…Qm) • Example • from clause P(x, f(a))  P(x, f(y))  Q(y) • and clause P(z, f(a)) Q(z) • derive resolvent P(z, f(y))  Q(y) Q(z) • Using θ = {x/z}

  11. A resolution proof tree

  12. A resolution proof tree ~P(w) v Q(w) ~Q(y) v S(y) ~True v P(x) v R(x) P(x) v R(x) ~P(w) v S(w) ~R(w) v S(w) S(x) v R(x) S(A)

  13. Resolution refutation • Given a consistent set of axioms KB and goal sentence Q, show that KB |= Q • Proof by contradiction: Add Q to KB and try to prove false, i.e.: (KB |- Q) ↔ (KB Q |- False) • Resolution is refutation complete: it can establish that a given sentence Q is entailed by KB, but can’t (in general) generate all logical consequences of a set of sentences • Also, it cannot be used to prove that Q is not entailed by KB • Resolution won’t always give an answer since entailment is only semi-decidable • And you can’t just run two proofs in parallel, one trying to prove Q and the other trying to prove Q, since KB might not entail either one

  14. Resolution example • KB: • allergies(X)  sneeze(X) • cat(Y)  allergicToCats(X)  allergies(X) • cat(felix) • allergicToCats(mary) • Goal: • sneeze(mary)

  15. Refutation resolution proof tree allergies(w) v sneeze(w) cat(y) v ¬allergicToCats(z)  allergies(z) w/z cat(y) v sneeze(z)  ¬allergicToCats(z) cat(felix) y/felix sneeze(z) v ¬allergicToCats(z) allergicToCats(mary) z/mary sneeze(mary) sneeze(mary) Notation old/new false negated query

More Related