1 / 15

H.-G. Scherneck, S. Bergstrand, M. Lidberg:

H.-G. Scherneck, S. Bergstrand, M. Lidberg: Fractals everywhere: Time series analysis and rate uncertainty NKG Working Group for Geodynamics Meeting in Ås, Norway, March 2006. We use: Unbiased autocovariance estimator (w.r.t. missing data) Window: Kaiser-Bessel

aviva
Download Presentation

H.-G. Scherneck, S. Bergstrand, M. Lidberg:

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. H.-G. Scherneck, S. Bergstrand, M. Lidberg: Fractals everywhere: Time series analysis and rate uncertainty NKG Working Group for Geodynamics Meeting in Ås, Norway, March 2006

  2. We use: • Unbiased autocovariance estimator (w.r.t. missing data) • Window: Kaiser-Bessel • A selection scheme for fit that avoids the spectral correlation due to windowing, and still gives a heavily overdetermined case. • We find: • Slope model fits almost always up to Nyquist • Disadvantage: Low-frequency part is not well resolved

  3. We use: • data from beg. 1998 to end 2004 • synth. fractal noise, 1,000-10,000 • masked by the real-world time series for breaks • Then we estimate a rate where (in white noise) we’d expect none. • ← shows histograms of these rates

  4. To specify the rate uncertainties, • We ought to use the fractal noise law • Next page: assumes Gauss-Markov

  5. From Johansson et al. 2002: ONSA.ra: -0.179 0.360 1.135 ONSW.ra: 4.077 0.483 2.274 OSKA.ra: 2.231 0.211 2.449 OSTE.ra: 8.331 0.209 3.290 OULU.ra: 10.761 0.199 2.010 OVER.ra: 9.020 0.226 1.520 POTS.ra: -1.389 0.176 4.195 RIGA.ra: 2.347 0.238 2.336 ROMU.ra: 7.566 0.268 3.313 SAAR.ra: 7.678 0.133 2.000 SKEL.ra: 10.527 0.217 4.126 SODA.ra: 11.143 0.217 1.692 SUND.ra: 9.926 0.206 2.614 SVEG.ra: 8.147 0.204 1.448 TROM.ra: 3.500 0.208 1.518 TUOR.ra: 6.062 0.158 1.807 UMEA.ra: 10.923 0.210 2.545 VAAS.ra: 10.750 0.187 1.607 VANE.ra: 4.132 0.209 4.322 VILH.ra: 8.508 0.210 2.508 VIRO.ra: 2.681 0.171 1.774 VISB.ra: 2.884 0.203 1.140 WETB.ra: 0.519 0.345 1.065 WETT.ra: -0.242 0.205 1.132 WTZR.ra: -0.232 0.216 0.000 GaussMarkov SITE co rate sigma sigmascale -------------------------------------------- ARJE.ra: 8.196 0.223 2.449 BORA.ra: 3.007 0.212 1.497 BRUS.ra: -1.624 0.172 1.797 HASS.ra: 1.008 0.205 1.898 HERS.ra: -1.286 0.087 22.761 JOEN.ra: 4.704 0.159 2.485 JONK.ra: 3.590 0.204 1.926 KARL.ra: 5.831 0.206 1.906 KEVO.ra: 5.437 0.253 4.795 KIRU.ra: 8.424 0.225 3.663 KIVE.ra: 8.469 0.245 2.981 KOSG.ra: -1.060 0.086 1.354 KUUS.ra: 12.200 0.264 5.649 LEKS.ra: 8.346 0.420 2.372 LOVO.ra: 5.964 0.212 1.465 MADR.ra: 0.983 0.247 1.870 MART.ra: 7.097 0.206 1.858 MATE.ra: -0.979 0.115 1.701 METS.ra: 5.242 0.234 1.355 NORR.ra: 4.898 0.211 1.376 NYAL.ra: 5.679 0.178 1.459 OLKI.ra: 8.516 0.171 1.768

  6. Conclusions • We think these considerations have a general notion; in GPS we have the advantage of long, regularly sampled time series • We find fractal noise with a non-integer power law  = ( 0.5 to 0.9) • Corresponding uncertainties for estimated rates must be scaled up with a factor of 4 to 15 w.r.t. white-noise results • This is more pessimistic than Gauss-Markov

More Related