1 / 28

Using Congruent Triangles

Using Congruent Triangles. Ch 4 Lesson 5. CPCTC. Corresponding parts of congruent triangles are congruent (CPCTC): Once two triangles are proven to be congruent than all corresponding parts of the two triangles are congruent. Example #1. Given AB II CD, BC II DA Prove AB ≅ CD

awen
Download Presentation

Using Congruent Triangles

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Using Congruent Triangles Ch 4 Lesson 5

  2. CPCTC • Corresponding parts of congruent triangles are congruent (CPCTC): Once two triangles are proven to be congruent than all corresponding parts of the two triangles are congruent

  3. Example #1 • Given AB II CD, BC II DA • Prove AB ≅ CD • Copy the diagram with signs to show parallel sides

  4. Statement AB II CD BC II DA <1 ≅ <4 <2 ≅ <3 BD ≅ BD ABC ≅ BDC AB ≅ CD Reason Given Given Alternating Angles Alternating Angles Reflexive prop. Def of ≅ triangles (ASA) Corresponding Sides of congruent triangles are congruent Example #1: Prove AB ≅ CD

  5. Statement AB II CD BC II DA <1 ≅ <4 <2 ≅ <3 BD ≅ BD ABC ≅ BDC AB ≅ CD Reason Given Given Alternating Angles Alternating Angles Reflexive prop. Def of ≅ triangles (ASA) Corresponding Sides of congruent triangles are congruent Example #1: Prove AB ≅ CD

  6. Statement AB II CD BC II DA <1 ≅ <4 <2 ≅ <3 BD ≅ BD ABC ≅ BDC AB ≅ CD Reason Given Given Alternating Angles Alternating Angles Reflexive prop. Def of ≅ triangles (ASA) Corresponding Sides of congruent triangles are congruent Example #1: Prove AB ≅ CD

  7. Statement AB II CD BC II DA <1 ≅ <4 <2 ≅ <3 BD ≅ BD ABC ≅ BDC AB ≅ CD Reason Given Given Alternating Angles Alternating Angles Reflexive prop. Def of ≅ triangles (ASA) Corresponding Sides of congruent triangles are congruent Example #1: Prove AB ≅ CD

  8. Statement AB II CD BC II DA <1 ≅ <4 <2 ≅ <3 BD ≅ BD ABC ≅ BDC AB ≅ CD Reason Given Given Alternating Angles Alternating Angles Reflexive prop. Def of ≅ triangles (ASA) Corresponding Sides of congruent triangles are congruent Example #1: Prove AB ≅ CD

  9. Statement AB II CD BC II DA <1 ≅ <4 <2 ≅ <3 BD ≅ BD ΔABC ≅ ΔBDC AB ≅ CD Reason Given Given Alternating Angles Alternating Angles Reflexive prop. Def of ≅ triangles (ASA) CPCTC Example #1: Prove AB ≅ CD

  10. Statement AB II CD BC II DA <1 ≅ <4 <2 ≅ <3 BD ≅ BD ΔABC ≅ ΔBDC AB ≅ CD Reason Given Given Alternating Angles Alternating Angles Reflexive prop. Def of ≅ triangles (ASA) CPCTC Example #1: Prove AB ≅ CD

  11. Example #2 Given: A is midpoint of MT A is midpoint of SR Prove: MS II TR

  12. Statement A is midpoint of MT A is midpoint of SR MA ≅ AT & SA ≅ AR <SAM ≅ <RAT Δ SAM ≅ Δ RAT <M≅ <T & <S≅ <R MS II TR Reason Given Given Def of ≅ Vertical <s SAS Theorem CPCTC (alternating <s) CPCTC (alternating <s) Given: A is midpoint of MT A is midpoint of SRProve: MS II TR

  13. Statement A is midpoint of MT A is midpoint of SR MA ≅ AT & SA ≅ AR <SAM ≅ <RAT Δ SAM ≅ Δ RAT <M≅ <T & <S≅ <R MS II TR Reason Given Given Def of ≅ Vertical <s SAS Theorem CPCTC (alternating <s) CPCTC (alternating <s) Given: A is midpoint of MT A is midpoint of SRProve: MS II TR

  14. Statement A is midpoint of MT A is midpoint of SR MA ≅ AT & SA ≅ AR <SAM ≅ <RAT Δ SAM ≅ Δ RAT <M≅ <T & <S≅ <R MS II TR Reason Given Given Def of ≅ Vertical <s SAS Theorem CPCTC (alternating <s) CPCTC (alternating <s) Given: A is midpoint of MT A is midpoint of SRProve: MS II TR

  15. Statement A is midpoint of MT A is midpoint of SR MA ≅ AT & SA ≅ AR <SAM ≅ <RAT Δ SAM ≅ Δ RAT <M≅ <T & <S≅ <R MS II TR Reason Given Given Def of ≅ Vertical <s SAS Theorem CPCTC (alternating <s) CPCTC (alternating <s) Given: A is midpoint of MT A is midpoint of SRProve: MS II TR

  16. Statement A is midpoint of MT A is midpoint of SR MA ≅ AT & SA ≅ AR <SAM ≅ <RAT Δ SAM ≅ Δ RAT <M≅ <T & <S≅ <R MS II TR Reason Given Given Def of ≅ Vertical <s SAS Theorem CPCTC (alternating <s) CPCTC (alternating <s) Given: A is midpoint of MT A is midpoint of SRProve: MS II TR

  17. Statement A is midpoint of MT A is midpoint of SR MA ≅ AT & SA ≅ AR <SAM ≅ <RAT Δ SAM ≅ Δ RAT <M≅ <T & <S≅ <R MS II TR Reason Given Given Def of ≅ Vertical <s SAS Theorem CPCTC (alternating <s) CPCTC (alternating <s) Given: A is midpoint of MT A is midpoint of SRProve: MS II TR

  18. Example #3 • Given: <1≅ <2 & <3 ≅ <4 • Prove ΔBCE ≅ ΔDCE

  19. Statement <1≅ <2 & <3 ≅ <4 CA ≅CA ΔACD ≅ ΔABC CB ≅ CB In ΔDEC & ΔBEC <1 ≅<2 CD ≅CB CE ≅CE ΔBCE ≅ ΔDCE Reason Given Reflexive ASA CPCTC Given CPCTC Reflexive SAS Given: <1≅ <2 & <3 ≅ <4Prove: ΔBCE ≅ ΔDCE

  20. Statement <1≅ <2 & <3 ≅ <4 CA ≅CA ΔACD ≅ ΔABC CB ≅ CB In ΔDEC & ΔBEC <1 ≅<2 CD ≅CB CE ≅CE ΔBCE ≅ ΔDCE Reason Given Reflexive ASA CPCTC Given CPCTC Reflexive SAS Given: <1≅ <2 & <3 ≅ <4Prove: ΔBCE ≅ ΔDCE

  21. Statement <1≅ <2 & <3 ≅ <4 CA ≅CA ΔACD ≅ ΔABC CB ≅ CB In ΔDEC & ΔBEC <1 ≅<2 CD ≅CB CE ≅CE ΔBCE ≅ ΔDCE Reason Given Reflexive ASA CPCTC Given CPCTC Reflexive SAS Given: <1≅ <2 & <3 ≅ <4Prove: ΔBCE ≅ ΔDCE

  22. Statement <1≅ <2 & <3 ≅ <4 CA ≅CA ΔACD ≅ ΔABC CB ≅ CB In ΔDEC & ΔBEC <1 ≅<2 CD ≅CB CE ≅CE ΔBCE ≅ ΔDCE Reason Given Reflexive ASA CPCTC Given CPCTC Reflexive SAS Given: <1≅ <2 & <3 ≅ <4Prove: ΔBCE ≅ ΔDCE

  23. Statement <1≅ <2 & <3 ≅ <4 CA ≅CA ΔACD ≅ ΔABC CB ≅ CB In ΔDEC & ΔBEC <1 ≅<2 CD ≅CB CE ≅CE ΔBCE ≅ ΔDCE Reason Given Reflexive ASA CPCTC Given CPCTC Reflexive SAS Given: <1≅ <2 & <3 ≅ <4Prove: ΔBCE ≅ ΔDCE

  24. Statement <1≅ <2 & <3 ≅ <4 CA ≅CA ΔACD ≅ ΔABC CB ≅ CB In ΔDEC & ΔBEC <1 ≅<2 CD ≅CB CE ≅CE ΔBCE ≅ ΔDCE Reason Given Reflexive ASA CPCTC Given CPCTC Reflexive SAS Given: <1≅ <2 & <3 ≅ <4Prove: ΔBCE ≅ ΔDCE

  25. Statement <1≅ <2 & <3 ≅ <4 CA ≅CA ΔACD ≅ ΔABC CB ≅ CB In ΔDEC & ΔBEC <1 ≅<2 CD ≅CB CE ≅CE ΔBCE ≅ ΔDCE Reason Given Reflexive ASA CPCTC Given CPCTC Reflexive SAS Given: <1≅ <2 & <3 ≅ <4Prove: ΔBCE ≅ ΔDCE

  26. Statement <1≅ <2 & <3 ≅ <4 CA ≅CA ΔACD ≅ ΔABC CB ≅ CB In ΔDEC & ΔBEC <1 ≅<2 CD ≅CB CE ≅CE ΔBCE ≅ ΔDCE Reason Given Reflexive ASA CPCTC Given CPCTC Reflexive SAS Given: <1≅ <2 & <3 ≅ <4Prove: ΔBCE ≅ ΔDCE

  27. Statement <1≅ <2 & <3 ≅ <4 CA ≅CA ΔACD ≅ ΔABC CB ≅ CB In ΔDEC & ΔBEC <1 ≅<2 CD ≅CB CE ≅CE ΔBCE ≅ ΔDCE Reason Given Reflexive ASA CPCTC Given CPCTC Reflexive SAS Given: <1≅ <2 & <3 ≅ <4Prove: ΔBCE ≅ ΔDCE

  28. Statement <1≅ <2 & <3 ≅ <4 CA ≅CA ΔACD ≅ ΔABC CB ≅ CB In ΔDEC & ΔBEC <1 ≅<2 CD ≅CB CE ≅CE ΔBCE ≅ ΔDCE Reason Given Reflexive ASA CPCTC Given CPCTC Reflexive SAS Given: <1≅ <2 & <3 ≅ <4Prove: ΔBCE ≅ ΔDCE

More Related