130 likes | 299 Views
Trigonometry: Review. SOHCAHTOA Show that tan Ө =sin Ө / cos Ө Pythagoras a 2 +b 2 =c 2 Show that cos 2 Ө +sin 2 Ө =1 (÷c & substitute with trig ratios) π radians =180° Non-right Angles: When would you use the following?. H. O. Ө. A. SOH CAH TOA. Sin=0/H -- O=H Sinx.
E N D
Trigonometry: Review • SOHCAHTOA • Show that tanӨ=sinӨ/cosӨ • Pythagoras a2+b2=c2 • Show that cos2 Ө+sin2Ө=1 (÷c & substitute with trig ratios) • πradians =180° • Non-right Angles: When would you use the following? H O Ө A
SOH CAH TOA Sin=0/H --O=H Sinx Applet: http://www.ies.co.jp/math/products/trig/applets/sixtrigfn/sixtrigfn.html
Sine Graph y=sinx Amplitude: Period: Frequency: Amplitude=1Period=360 or 2π
Cosine graph Amplitude: Period: Frequency:
Tangent graph Amplitude: Period: Frequency:
-sinx-cosx-tanx • Reflects in the x axis
asinxacosxatanx • Changes the amplitude (max distance from resting) of the graph • y=2sinx • y= cosx
sinbxcosbxtanbx • Changes the frequency (how often it repeats in 2π) &period (horizontal distance for one cycle) • y=sin3x frequency x3 , period ÷3 • y=cos1/2 x frequency ½ ed, period x2
sin(x-c) cos(x-c) tan (x-c) • Moves graph sideways ( + left - right ) • y=sin(x-45) • y=cos(x+90)
sin(x)+dcos(x)+d tan(x)+d • Moves graph up or down (+ up - down ) • y=sin(x)+2 • y=cos(x)-1
On Graphics Calculatoreg: sketch f(x)=3sin2(x-π/4) • Make sure you are in the right mode (rad/degrees) • Enter equation (use brackets around inner function) • Adjust view window: • Think about the domain you want to see:one cycle/ 2π (consider frequency & horizontal shift) • Think about the range (consider amplitude change & vertical shift) • If in radians, set the step as something including π (often π/2) • Remember you can g-solve for points/use table function to plot.