130 likes | 147 Views
This project focuses on utilizing MHD models for determining 3D magnetic and plasma structures above the photosphere and in interplanetary space, including high heliographic latitudes. The research involves temporal evolutions and different viewpoints. It aims to provide unobservable and observable outcomes through independent observations and quasi-real-time inputs. The study includes synoptic and synchronic maps/frames, global and local models, as well as daily MHD models with steady-state assumptions. Outputs include estimations of flow speed, density, magnetic field polarity, and coronal field structures. The proposed MHD model also evaluates surface magnetic fields with input from various sources.
E N D
HMI/AIA science team meeting Sep. 8 -- 11, 2009 Stanford, CA MHD model in HMI pipeline
MHD models • Input : as initial & boundary values, the magnetic field data, in various formats and cadences, (and plasma parameters from observations) • Output : theoretical determination / extrapolation of • 3D magnetic and plasma structures, above the photosphere, and in interplanetary space including the high heliographic latitude region, • Temporal evolutions, and • Views from various directions • MHD models can give unobservables • MHD models can give observables by independent observations
Input, (quasi-) real-time base • EOF (experiment operations facility) preliminary data • Synoptic / synchronic maps/frames • Global MHD/non-MHD models • Disk data • (remapped in coordinates corrected in accordance with geometry & solar differential rotation) • Local “patch” maps • Local MHD/non-MHD models • AR • remapped
Daily MHD model (steady-state) • Assumption: Polytrope in Eq. of state • Spatial resolution : ~ 5 degree • A few hours on 8-CPU(core) system. • With characteristics eq. matching fixed Br condition, the quasi-steady state be obtained • Outputs: • Open/closed coronal field structures • Rough estimation of flow speed and density • Magnetic field polarity at distant regions • Views from various directions • etc.
Daily MHD model (steady-state) • Assumption: Polytrope in Eq. of state • Spatial resolution : ~ 5 degree • A few hours in 8CPUs system. • With characteristics eq. matching fixed Br condition, the quasi-steady state be obtained • Outputs: • Open/closed coronal field structures • Rough estimation of flow speed and density • Magnetic field polarity at distant regions • Views from various directions
Daily MHD model (steady-state) • Assumption: Polytrope in Eq. of state • Spatial resolution : ~ 5 degree • A few hours in 8CPUs system. • With characteristics eq. matching fixed Br condition, the quasi-steady state be obtained • Outputs: • Open/closed coronal field structures • Rough estimation of flow speed and density • Magnetic field polarity at distant regions • Views from various directions
Daily MHD model (steady-state) • Assumption: Polytrope in Eq. of state • Spatial resolution : ~ 5 degree • A few hours in 8CPUs system. • With characteristics eq. matching fixed Br condition, the quasi-steady state be obtained • Outputs: • Open/closed coronal field structures • Rough estimation of flow speed and density • Magnetic field polarity at distant regions • Views from various directions
Daily MHD model (steady-state) • Assumption: Polytrope in Eq. of state • Spatial resolution : ~ 5 degree • A few hours on 8-CPU system. • With characteristics eq. matching fixed Br condition • The quasi-steady state be obtained • Outputs: • Open/closed coronal field structures • Rough estimation of flow speed and density • Magnetic field polarity at distant regions • Views from various directions • etc.
Daily MHD model (with time-varying Br) • Assumption: Polytrope in Eq. of state • Spatial resolution : ~ 5 degree • A few hours on 8-CPU system. • With characteristics eq. matching time-varying Br • Under development • Outputs: time-evolutions of • Open/closed coronal field structures • Rough estimation of flow speed and density • Magnetic field polarity at distant regions • Views from various directions • etc.
Surface magnetic field • From North pole, lon.90 dgr., south pole
Models : contribution • surface flow: FLCT, ILCT, DAVE4VM, etc. • Complete or completed by induction Eq. • ier=(int)flct(argc,argv,deltat,deltas,sigma,nnx,nny,f1,f2,ef,ef,vx,vy,evx,evy,vm); • for quick-look purpose and/or • with calibrated data. • PSI’s MHD contribution ∂t Br=rot (v B)|r