1 / 48

Building a scalable inbox system with MongoDB and Java

Building a scalable inbox system with MongoDB and Java. Antoine Girbal. JavaOne 2013. Technical Account Manager Lead, 10gen @ antoinegirbal. Agenda. Single Table En. Problem Overview Schema and queries Java D evelopment Design Options Fan out on Read Fan out on Write

ayanna
Download Presentation

Building a scalable inbox system with MongoDB and Java

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Building a scalable inbox system with MongoDB and Java Antoine Girbal JavaOne 2013 Technical Account Manager Lead, 10gen @antoinegirbal

  2. Agenda Single Table En Problem Overview Schema and queries Java Development Design Options • Fan out on Read • Fan out on Write • Bucketed Fan out on Write • Cached Inbox Discussion

  3. Problem Overview

  4. Let’s get Social

  5. Sending Messages ?

  6. Reading my Inbox ?

  7. Schema and Queries

  8. Basic CRUD Save your first document: >db.foo.save ( { fn: “YourFirstName”, ln: “YourLastName” } ) Find documents: > db.foo.find ( ) Find your document: > db.foo.findOne ( { fn: “YourFirstName”, ln: “YourLastName” } ) Update your document: > db.foo.update ( { fn: "YourFirstName", ln: "YourLastName" }, { x: "YourFavoriteNumber", y: "YourSecondFavoriteNumber" } ) Remove the document: > db.foo.remove ( { x: "YourFavoriteNumber", y: "YourSecondFavoriteNumber" } ) No schema definition or other declaration, it's easy!

  9. The User Document {"_id": ObjectId("519c12d53004030e5a6316d2"), "address": { "streetAddress": "2600 Rafe Lane", "city": "Jackson", "state": "MS", "zip": 39201, "country": "US"}, "birthday": "IDODate("1980-12-26T00:00:00.000Z"), "company": "Parade of Shoes", "domain": "SanFranciscoAgency.com", "email": "AnthonyJDacosta@pookmail.com", "firstName": "Anthony", "gender": "male", "lastName": "Dacosta", "location": [-90.183518,32.368619], … }

  10. The User Collection The collection statistics: > db.users.stats() { "ns": "edges.users", "count": 1000000,// number of documents "size": 637864480,// size of all documents "avgObjSize": 637.86448, "storageSize": 845197312, "numExtents": 16, "nindexes": 2, "lastExtentSize": 227786752, "paddingFactor": 1.0000000000260925,// padding after documents "systemFlags": 1, "userFlags": 0, "totalIndexSize": 66070256, "indexSizes": {"_id_": 29212848,"uid_1": 36857408}, "ok": 1 }

  11. Queries on Users Finding a user by email address… > db.users.find({"email": "AnthonyJDacosta@pookmail.com"}).pretty() {"_id": ObjectId("519c12d53004030e5a6316d2"), … By default will use a slow table scan… > db.users.find({"email": "AnthonyJDacosta@pookmail.com"}).explain() {"cursor": "BasicCursor", "nscannedObjects": 1000000, // 1m objects scanned "nscanned": 1000000, … Use an index for fast performance… > db.users.ensureIndex({"email": 1}) // does not do anything if index is there > db.users.find({"email": "AnthonyJDacosta@pookmail.com"}).explain() {"cursor": "BtreeCursor email_1", // Btree, sweet! "nscannedObjects": 1, // document is found almost right away "nscanned": 1, …

  12. Users Relationships Here the follower / followee relationships are of "many-to-many" type. It can be either stored as: • a list of followers in user • a list of followees in user • a relationship collection: "followees" • two relationship collections: "followees" and "followers". Ideal solutions: • a few million users and a 1000 followee limit: Solution #2 • no boundaries and relative scaling: Solution #3 • no boundaries and max scaling: Solution #4

  13. Relationship Data And the statistics: > db.followees.stats() { "ns": "edges.followees", "count": 1000000, "size": 64000048, "avgObjSize": 64.000048, "storageSize": 86310912, "numExtents": 10, "nindexes": 2, "lastExtentSize": 27869184, "paddingFactor": 1, "systemFlags": 1, "userFlags": 0, "totalIndexSize": 85561840, "indexSizes": { "_id_": 32458720, "user_1_followee_1": 53103120}, "ok": 1 } Let's look at a sample document: > use edges switched to db edges > db.followees.findOne() {"_id": ObjectId(), "user": "17052001”, "followee": "31554261” }

  14. Relationship Queries To find all the users that a user follows: > db.followees.ensureIndex({ user: 1, followee: 1 }) // why not just index on user? We shall see > db.followees.find({user: "11622712"}) { "_id" : ObjectId("51641c02e4b0ef6827a34569"), "user" : "11622712", "followee" : "30432718" } … > db.followees.find({user: "11622712"}).explain() { "cursor" : "BtreeCursor user_1_followee_1", "n" : 66, "indexOnly" : false, "millis" : 0, // this is fast Even faster if using a “covered” index: > db.followees.find({user: "11622712"}, {followee: 1, _id: 0}).explain() { "cursor" : "BtreeCursor user_1_followee_1", "n" : 66, "nscannedObjects" : 0, "nscanned" : 66, "indexOnly" : true, // this means covered To find all the followers of a user, we just need the opposite index:: > db.followees.ensureIndex({followee: 1, user: 1}) > db.followees.find({followee: "30313973"}, {user: 1, _id: 0})

  15. Message Document The message document: > db.messages.findOne() { "_id": "ObjectId("519d4858e4b079162fe7eb12"), "uid": "48268973", // the author id "username": "Abiall", // why store the username? "text": "Loremipsum dolor sit amet, consectetur...", "created": ISODate(2013-05-22T22:36:08.663Z"), "location": [-95.470188,37.366044], "tags": ["gadgets"] } Collection statistics: > db.messages.stats() { "ns": "msg.messages", "count": 21440518, "size": 14184598000, "avgObjSize": 661.5790719235422, "storageSize": 15749418944, "numExtents": 27, "nindexes": 2, "lastExtentSize": 2146426864, "paddingFactor": 1, "systemFlags": 1, "userFlags": 0, "totalIndexSize": 1454289648, "indexSizes": { "_id_": 695646784, "uid_1_created_1": 758642864}, "ok": 1 }

  16. Implementing the Outbox The query is on "uid" and needs to be sorted by descending "created" time: > db.messages.ensureIndex({ "uid": 1,"created": 1}) // use a compound index > db.messages.find({"uid": "31837072"}).sort({"created": -1}).limit(100) {"_id": ObjectId("519d626ae4b07916312e15b1")},"uid": "31837072","username": "Royague", "text": "Loremipsum dolor sit amet, consecteturadipisicingelit , sed do eiusmodtempor …", "created": ISODate("2013-05-23T00:27:22.369Z"), "location": ["-118.296138","33.772832"], "tags": ["Art"]} … > db.messages.find({"uid": "31837072"}).sort({"created": -1}).limit(100).explain() { "cursor": "BtreeCursor uid_1_created_1 reverse", "n": 18, "nscannedObjects": 18, "nscanned": 18, "scanAndOrder": false, "millis": 0 …

  17. Java Development

  18. Java support Java driver is open source, available on github. mongo.jar is the driver, bson.jar is a subset with BSON library only. Java driver is currently the most used MongoDB driver It receives active development by 10gen and the community

  19. Driver Features CRUD Support for replica sets Connection pooling Distributed reads to slave servers BSON serializer/deserializer (lazy option) JSON serializer/deserializer GridFS

  20. Message Store public class MessageStoreDAO implements MessageStore { private Morphiamorphia; private Datastore ds; public MessageStoreDAO( MongoClient mongo ) { this.morphia = new Morphia(); this.morphia.map(DBMessage.class); this.ds = morphia.createDatastore(mongo, "messages"); this.ds.getCollection(DBMessage.class). ensureIndex(new BasicDBObject("sender",1).append("sentAt",1) ); } // get a message public Message get(String user_id, String msg_id) { return (Message) this.ds.find(DBMessage.class) .filter("sender", user_id) .filter("_id", new ObjectId(msg_id)) .get(); }

  21. Message Store // save a message public Message save(String user_id, String message, Date date) { Message msg = new DBMessage( user_id, message, date ); ds.save( msg ); return msg; } // find message by author sorted by descending time public List<Message> sentBy(String user_id) { return (List) this.ds.find(DBMessage.class) .filter("sender",user_id).order("-sentAt").limit(50).asList(); } // find message by several authors sorted by descending time public List<Message> sentBy(List<String> user_ids) { return (List) this.ds.find(DBMessage.class) .field("sender").in(user_ids).order("-sentAt").limit(50).asList(); }

  22. Graph Store Below uses Solution #4: both a follower and followee list public class GraphStoreDAO implements GraphStore { private DBCollection friends; private DBCollection followers; public GraphStoreDAO(MongoClient mongo) { this.followers = mongo.getDB("edges").getCollection("followers"); this.friends = mongo.getDB("edges").getCollection("friends"); followers.ensureIndex( new BasicDBObject("u",1).append("o",1), new BasicDBObject("unique", true)); friends.ensureIndex( new BasicDBObject("u",1).append("o",1), new BasicDBObject("unique",true)); } // find users that are followed public List<String> friendsOf(String user_id) { List<String> theFriends = new ArrayList<String>(); DBCursor cursor = friends.find( new BasicDBObject("u",user_id), new BasicDBObject("_id",0).append("o",1)); while(cursor.hasNext()) theFriends.add( (String) cursor.next().get("o")); return theFriends; }

  23. Graph Store // find followers of a user public List<String> followersOf(String user_id) { List<String> theFollowers = new ArrayList<String>(); DBCursor cursor = followers.find( new BasicDBObject("u",user_id), new BasicDBObject("_id",0).append("o",1)); while(cursor.hasNext()) theFollowers.add( (String) cursor.next().get("o")); return theFollowers; } public void follow(String user_id, String toFollow) { friends.save( new BasicDBObject("u",user_id).append("o",toFollow)); followers.save( new BasicDBObject("u",toFollow).append("o",user_id)); } public void unfollow(String user_id, String toUnFollow) { friends.remove(new BasicDBObject("u", user_id).append("o", toUnFollow)); followers.remove(new BasicDBObject("u", toUnFollow).append("o", user_id)); }

  24. Design Options

  25. 4 Approaches (there are more) Fan out on Read Fan out on Write Bucketed Fan out on Write Inbox Caches

  26. Fan out on read Generally, not the right approach 1 document per message sent Reading an inbox is finding all messages sent by the list of people users follow Requires scatter-gather on sharded cluster Then a lot of random IO on a shard to find everything

  27. Fan out on Read Put the followees ids in a list: > var fees = [] > db.followees.find({user: "11622712"}) .forEach( function(doc) { fees.push( doc.followee ) } ) Use $in and sort() and limit() to gather the inbox: > db.messages.find({uid: {$in: fees}}).sort({created: -1}).limit(100) {"_id": ObjectId("519d627ce4b07916312f0a09"),"uid": "34660390","username": "Dingdowas"}… {"_id": ObjectId("519d627ce4b07916312f0a10"),"uid": "34661390","username": "John"} … {"_id": ObjectId("519d627ce4b07916312f0a11"),"uid": "34662390","username": "Brenda"} … …

  28. Fan out on read – Send Message Send Message Shard 1 Shard 2 Shard 3

  29. Fan out on read – Inbox Read Read Inbox Shard 1 Shard 2 Shard 3

  30. Fan out on read > db.messages.find({uid: {$in: fees}}).sort({created: -1}).limit(100).explain() { "cursor": "BtreeCursor uid_1_created_1 multi", "isMultiKey": false, "n": 100, "nscannedObjects": 1319, "nscanned": 1384, "nscannedObjectsAllPlans": 1425, "nscannedAllPlans": 1490, "scanAndOrder": true,// it is sorting in RAM?? "indexOnly": false, "nYields": 0, "nChunkSkips": 0, "millis": 31 // takes about 30ms }

  31. Fan out on read - sort

  32. Fan out on write Tends to scale better than fan out on read 1 document per recipient Reading my inbox is just finding all of the messages with me as the recipient Can shard on recipient, so inbox reads hit one shard But still lots of random IO on the shard

  33. Fan out on Write // Shard on “recipient” and “sent” db.shardCollection(”myapp.inbox”, { ”recipient”: 1, ”sent”: 1 } ) msg= { from: "Joe”, sent: new Date(), message: ”Hi!” } // Send a message, write one message per follower for( follower in followersOf( msg.from) ) { msg.recipient = recipient db.inbox.save(msg); } // Read my inbox, super easy db.inbox.find({ recipient: ”Joe” }).sort({ sent: -1 })

  34. Fan out on write – Send Message Send Message Shard 1 Shard 2 Shard 3

  35. Fan out on write– Read Inbox Read Inbox Shard 1 Shard 2 Shard 3

  36. Bucketed Fan out on write Each “inbox” document is an array of messages Append a message onto “inbox” of recipient Bucket inbox documents so there’s not too many per document Can shard on recipient, so inbox reads hit one shard 1 or 2 documents to read the whole inbox

  37. Bucketed Fan out on Write // Shard on “owner / sequence” db.shardCollection(”myapp.buckets”, { ”owner”: 1, ”sequence”: 1 } ) db.shardCollection(”myapp.users”, { ”user_name”: 1 } ) msg= { from: "Joe”, sent: new Date(), message: ”Hi!”} // Send a message, have to find the right sequence document for( follower in followersOf( msg.from) ) { sequence = db.users.findAndModify({ query: { user_name: recipient}, update: { '$inc': { ’msg_count': 1 }}, upsert: true, new: true }).msg_count / 50; db.buckets.update({ owner: recipient, sequence: sequence}, { $push: { ‘messages’: msg } }, { upsert: true }); } // Read my inbox db.buckets.find({ owner: ”Joe” }).sort({ sequence: -1 }).limit(2)

  38. Bucketed fan out on write - Send Send Message Shard 1 Shard 2 Shard 3

  39. Bucketed fan out on write - Read Read Inbox Shard 1 Shard 2 Shard 3

  40. Cached inbox Recent messages are fast, but older messages are slower Store a cache of last N messages per user Used capped array to age out older messages Create cache lazily when user accesses inbox Only write the message if cache exists. Use TTL collection to time out caches for inactive users

  41. Cached Inbox // Shard on “owner" db.shardCollection(”myapp.caches”, { ”owner”: 1 } ) // Send a message, add it to the existing caches of followers for( follower in followersOf( msg.from) ) { db.caches.update({ owner: recipient }, { $push: { messages: { $each: [ msg ], $sort: { ‘sent’: 1 }, $slice: -50 } } } ); // Read my inbox If( msgs = db.caches.find({ owner: ”Joe” }) ) { // cache document exists return msgs; } else { // fall back to "fan out on read" and cache it db.caches.save({owner:’joe’, messages:[]}); msgs = db.outbox.find({sender: { $in: [ followersOf( msg.from ) ] }}).sort({sent:-1}).limit(50); db.caches.update({user:’joe’}, {$push: msgs }); }

  42. Cached Inbox – Send Send Message Shard 1 Shard 2 Shard 3

  43. Cached Inbox- Read Read Inbox Cache Miss 2 Cache Hit 1 Shard 1 Shard 2 Shard 3

  44. Discussion

  45. Tradeoffs

  46. Things to consider Lots of recipients • Fan out on write might become prohibitive • Consider introducing a “Group” • Make fan out asynchronous Very large message size • Multiple copies of messages can be a burden • Consider single copy of message with a “pointer” per inbox More writes than reads • Fan out on read might be okay

  47. Summary Multiple ways to model status updates Think about characteristics of your network • Number of users • Number of edges • Publish frequency • Access patterns Try to minimize random IO

  48. Thank You Antoine Girbal JavaOne 2013 Technical Account Manager Lead, 10gen

More Related