1 / 40

Desarrollo y patrones arquitectónicos

Desarrollo y patrones arquitectónicos. Dr. Robert J. Mayer UPR en Aguadilla. Presentación 2. http://math.uprag.edu/rmayer/zoopres2.ppt. Tareas. Leer hasta la página del libro de Carl Safina Escribir una biografía corta del autor y entregarla el 1.24.11

ayasha
Download Presentation

Desarrollo y patrones arquitectónicos

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Desarrollo y patrones arquitectónicos Dr. Robert J. Mayer UPR en Aguadilla Presentación 2 http://math.uprag.edu/rmayer/zoopres2.ppt

  2. Tareas Leer hasta la página del libro de Carl Safina Escribir una biografía corta del autor y entregarla el 1.24.11 Leer los capítulos 8 y 9 del libro de texto “Zoology” Objetivos Conocer los conceptos básicos de la biología del desarrollo Conocer los conceptos básicos de la embriología

  3. INTERPHASE S(DNA synthesis) G1 CytokinesisMitosis G2 MITOTIC(M) PHASE Figure 12.5 Phases of the Cell Cycle • The cell cycle consists of • The mitotic phase • Interphase

  4. G2 OF INTERPHASE PROMETAPHASE PROPHASE Centrosomes(with centriole pairs) Aster Fragmentsof nuclearenvelope Early mitoticspindle Kinetochore Chromatin(duplicated) Centromere Nonkinetochoremicrotubules Kinetochore microtubule Chromosome, consistingof two sister chromatids Nuclearenvelope Plasmamembrane Nucleolus Figure 12.6 • Mitosis consists of five distinct phases • Prophase • Prometaphase

  5. G2 of Interphase • A nuclear envelope bounds the nucleus. • The nucleus contains one or more nucleoli (singular, nucleolus). • Two centrosomes have formed by replication of a single centrosome. • In animal cells, each centrosome features two centrioles. • Chromosomes, duplicated during S phase, cannot be seen individually because they have not yet condensed. • The light micrographs show dividing lung cells from a newt, which has 22 chromosomes in its somatic cells (chromosomes appear blue, microtubules green, intermediate filaments red). For simplicity, the drawings show only four chromosomes.

  6. PROMETAPHASE G2 OF INTERPHASE PROPHASE Centrosomes(with centriole pairs) Aster Fragmentsof nuclearenvelope Early mitoticspindle Kinetochore Chromatin(duplicated) Centromere Nonkinetochoremicrotubules Kinetochore microtubule Nucleolus Chromosome, consistingof two sister chromatids Nuclearenvelope Plasmamembrane Figure 12.6 • Prophase • The chromatin fibers become more tightly coiled, condensing into discrete chromosomes observable with a light microscope. • The nucleoli disappear. • Each duplicated chromosome appears as two identical sister chromatids joined together. • The mitotic spindle begins to form. It is composed of the centrosomes and the microtubules that extend from them. The radial arrays of shorter microtubules that extend from the centrosomes are called asters (“stars”). • The centrosomes move away from each other, apparently propelled by the lengthening microtubules between them.

  7. PROMETAPHASE G2 OF INTERPHASE PROPHASE Centrosomes(with centriole pairs) Aster Fragmentsof nuclearenvelope Early mitoticspindle Kinetochore Chromatin(duplicated) Centromere Nonkinetochoremicrotubules Kinetochore microtubule Nucleolus Chromosome, consistingof two sister chromatids Nuclearenvelope Plasmamembrane Figure 12.6 • Prometaphase • The nuclear envelope fragments. • The microtubules of the spindle can now invade the nuclear area and interact with the chromosomes, which have become even more condensed. • Microtubules extend from each centrosome toward the middle of the cell. • Each of the two chromatids of a chromosome now has a kinetochore, a specialized protein structure located at the centromere. • Some of the microtubules attach to the kinetochores, becoming “kinetochore microtubules.” These kinetochore microtubules jerk the chromosomes back and forth. • Nonkinetochore microtubules interact with those from the opposite pole of the spindle.

  8. METAPHASE ANAPHASE TELOPHASE AND CYTOKINESIS Metaphaseplate Cleavagefurrow Nucleolusforming Nuclear envelopeforming Daughter chromosomes Centrosome at one spindle pole Spindle • Metaphase • Metaphase is the longest stage of mitosis, lasting about 20 minutes. • The centrosomes are now at opposite ends of the cell. • The chromosomes convene on the metaphase plate, an imaginary plane that is equidistant between the spindle’s two poles. The chromosomes’ centromeres lie on the metaphase plate. • For each chromosome, the kinetochores of the sister chromatids are attached to kinetochore microtubules coming from opposite poles. • The entire apparatus of microtubules is called the spindle because of its shape.

  9. METAPHASE ANAPHASE TELOPHASE AND CYTOKINESIS Metaphaseplate Cleavagefurrow Nucleolusforming Nuclear envelopeforming Daughter chromosomes Centrosome at one spindle pole Spindle • Anaphase • Anaphase is the shortest stage of mitosis, lasting only a few minutes. • Anaphase begins when the two sister chromatids of each pair suddenly part. Each chromatid thus becomes a full- fledged chromosome. • The two liberated chromosomes begin moving toward opposite ends of the cell, as their kinetochore microtubules shorten. Because these microtubules are attached at the centromere region, the chromosomes move centromere first (at about 1 µm/min). • The cell elongates as the nonkinetochore microtubules lengthen. • By the end of anaphase, the two ends of the cell have equivalent—and complete—collections of chromosomes.

  10. METAPHASE ANAPHASE TELOPHASE AND CYTOKINESIS Metaphaseplate Cleavagefurrow Nucleolusforming Nuclear envelopeforming Daughter chromosomes Centrosome at one spindle pole Spindle • Telophase • Two daughter nuclei begin to form in the cell. • Nuclear envelopes arise from the fragments of the parent cell’s nuclear envelope and other portions of the endomembrane system. • The chromosomes become less condensed. • Mitosis, the division of one nucleus into two genetically identical nuclei, is now complete. • Cytokinesis • The division of the cytoplasm is usually well underway by late telophase, so the two daughter cells appear shortly after the end of mitosis. • In animal cells, cytokinesis involves the formation of a cleavage furrow, which • pinches the cell in two.

  11. METAPHASE ANAPHASE TELOPHASE AND CYTOKINESIS Metaphaseplate Cleavagefurrow Nucleolusforming Nuclear envelopeforming Daughter chromosomes Centrosome at one spindle pole Spindle Figure 12.6 • Metaphase • Anaphase • Telophase

  12. MEIOSIS I: Separates homologous chromosomes INTERPHASE PROPHASE I METAPHASE I ANAPHASE I Sister chromatids remain attached Centromere (with kinetochore) Centrosomes (with centriole pairs) Chiasmata Metaphase plate Sister chromatids Spindle Nuclear envelope Homologous chromosomes separate Microtubule attached to kinetochore Tetrad Chromatin Pairs of homologous chromosomes split up Chromosomes duplicate Tertads line up Homologous chromosomes (red and blue) pair and exchange segments; 2n = 6 in this example • Interphase and meiosis I Figure 13.8

  13. MEIOSIS II: Separates sister chromatids TELOPHASE II AND CYTOKINESIS TELOPHASE I AND CYTOKINESIS METAPHASE II ANAPHASE II PROPHASE II Cleavage furrow Haploid daughter cells forming Sister chromatids separate Two haploid cells form; chromosomes are still double During another round of cell division, the sister chromatids finally separate; four haploid daughter cells result, containing single chromosomes Figure 13.8 • Telophase I, cytokinesis, and meiosis II

  14. Preformación (siglos 17 y 18) Coherencia conceptual 1759 Kaspar Friedrich Wolff – epigénesis

  15. Desarrollo – describe cambios progresivos en un individuo desde su concepción hasta la madurez.. Organismos multicelulares sexuales - Rearreglos extensos e interacciones = plan corporal (body plan) y celulas especializadas. Las células especializadas surgen gracias a una serie de condicines creadas en etapas anteriores. En cada paso del desarrollo surgen nuevas estructuras como resultado de interacciones. Cada interacción es incrementalmente restrictiva.

  16. Determinación – localización citoplásmica - inducción

  17. Durante la ovogénesis el óvulo (huevo) se prepara para la fertilización y para el comienzo del desarrollo. El espermatozoide es una célula vacía llena de material genético a diferencia del huevo El huevo se prepara durante la profase de meiosis I – producción de cuerpos polares (exceso de citoplasma)

  18. Fertilización • Fertilización externa • Fertilización interna • Especificidad (quimiotaxis) • Se evita la polispermia • “fast block” cambio en el potencial de • la membrana • b.“cortical reaction”

  19. Fertilización Restauración del número diploide Activación del óvulo (a veces es lo único) Partenogénesis

  20. Eventos que ocurren durante la fecundación y el desarrollo temprano.

  21. Segmentación (cleavage) en distintos organismos “Cleavage furrow” Isolecitos < Mesolecitos < Telolecitos < Centrolecitos Holoblástico - (tunicados, equinodermos, tunicados, cefalocordados, nemerteos, y la mayor parte de los moluscos, marsupiales y mamíferos placentales) Meroblástico– aves, reptiles, peces, anfibios, moluscos cefalópodos, y mamíferos Monotremos Insectos = Centrolecitos

  22. La cantidad de vitelo determina el tipo de desarrollo temprano del organismo Directo Indirecto

  23. Formación de capas embrionarias (Gastrulación) archenteron Blastulación Blastocelo Blástula (Celoblástula – hueca y Stereoblástula – sólida) = 200 – varios miles de células Se forma en todos los organismos multicelulares El desarrollo continua mas allá de la blástula y se forman capas embrionarias (excepto en las esponjas) Invaginación = gastrulación

  24. Tres capas embrionarias Endodermo Mesodermo Ectodermo Diploblástico Triploblástico Dos cavidades (celoma y sistema digestivo) Celoma – cavidad corporal completamente revestida por mesodermo

  25. Dos tipos de organismos tripoblásticos Los mamíferos son deuterostomados pero su celoma se forma mediante un proceso esquizocélico modificado

  26. Figure 08.14

  27. Protostomes Deuterostomes

More Related