1 / 45

Array BP-XOR Codes for Reliable Cloud Storage Systems

Array BP-XOR Codes for Reliable Cloud Storage Systems. Yongge Wang UNC Charlotte, USA IEEE ISIT(International Symposium on Information Theory) 2013. Outlines. Introduction Edge-colored graphs Array BP-XOR codes Flat non-MDS BP-XOR codes Conclusion.

ayla
Download Presentation

Array BP-XOR Codes for Reliable Cloud Storage Systems

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Array BP-XOR Codes for Reliable Cloud Storage Systems YonggeWang UNC Charlotte, USA IEEE ISIT(International Symposium on Information Theory)2013

  2. Outlines • Introduction • Edge-colored graphs • Array BP-XOR codes • Flat non-MDS BP-XOR codes • Conclusion

  3. EaaS and Remote Computation on Data • IaaS, PaaS, SaaS, NaaS, EaaS, etc. • data (services) are stored at remote client • we may need the remote cloud server to process some query (processing) on these data instead of downloading the data to local computer and process the data

  4. Where is the privacy? • Data is stored on the remote server in clear? • we do not trust the remote server • what is the solution? • encrypt the data and store the cipher text? • how can do “computation on the data remotely”?

  5. Examples • many choices for personal cloud data storage • Dropbox, SkyDrive, Google Drive, Amazon Cloud drive, Apple iCloud, Ubuntu One, etc. • do you trust any one of these server and put your data (your memory) there? • reliability? privacy?

  6. Our Solution • XOR-MDS codes are converted to XOR-based Secret Sharing Schemes • 2-out-of-6 SSS(secret sharing scheme) • Register accounts at: Dropbox, SkyDrive, Google Drive, Amazon Cloud drive, Apple iCloud, Ubuntu One, etc. • data from any two servers are sufficient, but each single server learns zero information about data

  7. Array Codes • Mainly used for data storage system • example array codes • Blaum, et al: EVENODD (2 disk faults) • Blaum, et al: extended EVENODD (3 disk faults). • [2k, k, d] chain code • Simple Product Code (SPC) • Row-Diagonal Parity (RDP) • BlaumRDP(p, i) for i≦ 8 [1] M. Blaum, J. Brady, J. Bruck, and J. Menon. EVENODD: An efficient scheme for tolerating double disk failures in raid architectures. IEEE Trans. Computers, 44(2):192–202, 1995.

  8. Sample EVENODD code

  9. Array Code Definition • Message set: M = {0, 1} and fixed n, k, t, and b • Information variables: let v1,… , vbk • A t-erasure tolerating [n, k] array code is a b x nmatrix C = [αi,j]1≤i≤b,1≤j≤n • Each αi,j {0, 1} is XOR of information symbols • v1,… , vbkrecovered from any n - tcolumns of the matrix • For , call vija neighbor of αi,j and σ the degree of αi,j. • A t-erasure tolerating [n,k] b x n array code C is said to be Maximum Distance Separable (MDS) if k = n - t

  10. Array BP-XOR Code • [Definition] A t-erasure tolerating [n, k] array code C = [αi,j]1≤i≤b,1≤j≤n is called an [n, k] array BP-XOR code if all information symbols v1,… , vbkcan be recovered from any n − t columns of encoding symbols using the BP-decoding process.

  11. Degree 2 Array BP-XOR Code • [Theorem] If each encoding symbol in C= [αi,j]1≤i≤b,1≤j≤n has degree at most 2, then the restricted array BP-XOR codes are equivalent to edge-colored graphs introduced by Wang and Desmedtfor tolerating network homogeneous faults.

  12. Edge-colored Graph Definition • Definition : (Wang and Desmedt [15]) An edge-colored graph is a tupleG = (V, E,C, f), with V the node set, E the edge set, C the color set, and f a map from E onto C. The structure ZC,t= {Z : Z ⊆ E and |f(Z)| ≤ t}. is called a t-color adversary structure. • Let A,B ∈ V be distinct nodes of G. • A and B are called (t+1)-color connectedfor t ≥ 1 if for any color set Ct⊆ C of size t, there is a path p from A to B in G such that the edges on p do not contain any color in Ct. • An edge-colored graph G is (t+1)-color connected if and only if for any two nodes A and B in G, they are (t+1)-color connected. [15] Yongge Wang and YvoDesmedt. Edge-colored graphs with applications to homogeneous faults. Inf. Process. Lett., 111(13):634–641, 2011.

  13. 3-color connected graph G4,2 with 7 nodes, 12 edges, and 4 colors. Removal of any two colors in the graph will not disconnect the graph.

  14. Definition • Let Kn = (V,E) be the complete graph with n nodes. • For an even n, a one-factor of Kn is a spanning 1-regular subgraph (or a perfect matching) of Kn. • A one-factorization of Kn(n is even) is a set of one-factors that partition the set of edges E. • A one-factorizationis called perfect (or P1F) if the union of every two distinct one-factors is a Hamiltonian circuit.

  15. P1F • Perfect one-factorizations for Kp+1, K2p, and certain K2ndo exist, where p is a prime number. It is conjectured that P1F exist for all K2n.

  16. P1F Example

  17. P1F of K8

  18. Edge-colored graphs from P1F

  19. Edge-colored graphs from P1F: Proof • Proof. Let v1, . . . , vn+1 be a list of nodes for Kn+1 and V = {v1,…, vn}. Let F’i= Fi \ {<vn+1,vj> : j = 1, …, n}, E = F’1 ∪ ・ ・ ・ ∪ F’t+2, and color all edges in F’iwith the color cifor i≤ t + 2. Then it is straightforward to check that the edge-colored graph (V,E) is (t+1)-color connected, |V| = n, and |E| = (t + 2)(n − 1)/2.

  20. Choose a fixed node v7and removeall occurrences of v7to get the [4,2] 3 x 4 array BP-XOR code:

  21. Edge-colored graphs from array BP-XOR code • G = (V, E,C, f) be a (t + 1)-color connected edge-colored graph with V = {v1, …, vbk, vbk+1} and C = {c1, c2, …, cn} and b = maxc∈C{|Z| : Z ⊆ E, f(Z) = c}. • 1) For 1 ≤i≤ n, let βibe defined as • 2) If | βi| is smaller than b, duplicate elements in βito make it a b-element set. • 3) The array BP-XOR code is specified by the b × n matrix

  22. Array BP-XOR codes from edge-colored graphs • Theorem : Let C be an b × n array BP-XOR code with the following properties: 1) C is t-erasure tolerating, 2) C contains bkinformation symbols; and 3) C contains only degree one and two encoding symbols. Then there exists a (t+1)-color connected edge-colored graph G = (V, E,C, f) with|V|=bk+1, |E|=bn, and |C|=n.

  23. MDS [n,2] array BP-XOR codes • First find the smallest p (or 2p) such that n≤p (or n≤ 2p-1), where p is an odd prime. Using P1F of Kp+1 to construct the edge-colored graphs and then design the following array BP-XOR code

  24. Efficient XOR-based secret sharing scheme • As an example, design SSS based on the previous codes • Let secret data file • Now assume that the first bit of F is flipped. This is equivalent to flipping the first bit of vp-1. Thus the data owner only needs to inform each server to flip one bit at certain location without leaking any other information. • Other remote computation is possible also (e.g., remote search or database query)

  25. Flat BP-XOR codes • A b x narray BP-XOR code is called a flat BP-XOR codeif b= 1. Furthermore, a 1 x nBP-XOR code with kinformation symbols and distance d is called an [n, k, d] BP-XOR code. • Fact : Let n ≥ k + 2, k ≥ 2, and d = n − k + 1.Then there is no flat [n, k, d]BP-XOR code.

  26. Tolerating one erasure fault

  27. Tolerating two erasure faults • Fact 4.1 shows that two parity check symbols are not sufficient for tolerating two erasure faults for flat BP-XOR codes. In order to tolerate two erasure, we have to consider codes with n ≥ k + 3. Theorem : For n ≥ k + 3 and k ≥ 3, there exists a flat [n, k, 3] BP-XOR code if and only if k ≤ 2n−k −(n−k)−1. Proof. The truncated version (or non-truncated version if k = 2n-k-(n-k)-1 ) of the Hamming code could be used to prove the theorem.

  28. Tolerating two erasure faults • Flat [5, 2, 3],[6, 3, 3], and [7, 4, 3] BP-XOR codes for tolerating two erasure faults. • The above three codes are the only flat [k+3, k, 3] BP-XOR codes tolerating two erasure faults with three redundancy columns.

  29. Tolerating two erasure faults

  30. Tolerating three erasure faults

  31. Tolerating three erasure faults βiare distinct elements from X.

  32. Tolerating three erasure faults • Let n = 7, k = 3, d = 4, and β1 = (1, 1, 1, 0), β2 = (0, 1, 1, 1), and β3 = (1, 0, 1, 1). Then the corresponding code has the following generator matrix:

  33. Tolerating three erasure faults

  34. Tolerating four or more erasure faults

  35. Conclusion • We used edge-colored graphs to design degree one-and-two encoding symbol based array BP-XOR codes. • Degree one and two encoding symbols could be used to design MDS array BP-XOR codes with t = 2or k = 2.

  36. References • [1] M. Blaum, J. Brady, J. Bruck, and J. Menon. EVENODD: An efficient scheme for tolerating double disk failures in raid architectures. IEEE Trans. Computers, 44(2):192–202, 1995. • [2] M. Blaum, J. Bruck, and E. Vardy. MDS array codes with independent parity symbols. IEEE Trans. on Information Theory, 42:529–542, 1996. • [3] M. Blaum and R. M. Roth. On lowest-density MDS codes. IEEE Trans. on Information Theory, 45:46–59, 1999. • [7] N. Cao, S. Yu, Z. Yang, W. Lou, and T. Hou. Lt codes-based secure and reliable cloud storage service. In Proceedings of INFOCOM, 2012. • [8] C. Huang and L. Xu. STAR: an efficient coding scheme for correcting triple storage node failures. In FAST, pages 197–210, 2005. • [13] M. Paterson, D. Stinson, and Yongge Wang. On encoding symbol degrees of array bp-xor codes. Submitted for publication, 2013. • [15] Yongge Wang and YvoDesmedt. Edge-colored graphs with applications to homogeneous faults. Inf. Process. Lett., 111(13):634–641, 2011.

More Related