1 / 62

Astronomija kratka povijest problematike

Astronomija kratka povijest problematike. Područje interesa. Planet i S unčev sustav Zvijezde Međuzvjezdani prostor Gal aksije Aktivne galaktičke jezgre ( AGN ) Kvazari (eng. quasar - quasi-stellar radio source) Klasteri galaksija Pulsari (brzorotirajuće neutronske zvijezde) Svemir.

ayoka
Download Presentation

Astronomija kratka povijest problematike

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Astronomijakratka povijest problematike

  2. Područje interesa • Planeti • Sunčev sustav • Zvijezde • Međuzvjezdani prostor • Galaksije • Aktivne galaktičke jezgre (AGN) • Kvazari (eng. quasar - quasi-stellar radio source) • Klasteri galaksija • Pulsari (brzorotirajuće neutronske zvijezde) • Svemir

  3. Sunčev sustav • Fizika Sunca • Solarni vjetar • Planeti • Njihovi sateliti • Asteroidi • NEOs (eng. Near eart objects) • Pojasi • Interplanetarna prašina

  4. Zvijezde • promjenjive zvijezde • dvojne zvijezde • patuljci, divovi • Supernove • kompaktni objekti (crne rupe, bijeli patuljci, neutronskezvijezde)

  5. Međuzvjezdani prostor • Nastanak zvijezda • Astro-kemija • Struktura i razvoj zvijezda • Nuklearna astrofizika

  6. Galaksije • Nastanak i formiranje • Struktura • Naseljenost • Dinamika

  7. AGN (Aktivne galaktičke jezgre) Kvazari • nastanak • klasifikacija • gorivo • evolucija • gustoća

  8. Klasteri • Nastanak i razvoj • Struktura • Tamna tvar • Gravitacijske leće

  9. Svemir • Starost i veličina • Nastanak i razvoj • Tamna materija , stringovi, egzotične čestice • Topologija (oblik)

  10. Promatranje Zemaljsko (optičko, infracrveno, radio) Vanplanetarno(sateliti i satelitske platforme; UV, x-ray) Računanje Analiza podataka Kompleksni problemi Numeričke simulacije Analiza objektivnost asimiliranjeformi i podataka linearno & nelinearnorazmišljanje Pisanje publikacija prijedloga prezentacija Znanstveni elementi u astronomiji

  11. Zapošljavanje (danas)

  12. Što astronomi ne rade • Pišu horoskope • Imaju vezu s vanzemaljskim civilizacijama • Memoriraju konstelacije • Cijelo vrijeme gledaju kroz teleskop

  13. Radioastronomija Kozmičko zračenje 3K

  14. Elektromagnetski valovi

  15. E=hn c=ln Kraćo valovi Veća energija Viša frekvencija Duži valovi Niža energija Niža frekvencija

  16. Elektromagnetski spektar

  17. Elektromagnetski prozor kroz atmosferu!

  18. Termalni Zračenje crnog tijela Kontinuirana emisija ioniziranog plina (plazma) Emisija spektralnog zračenja atoma i molekula Netermalni Sinkrotronsko zračenje MASERS Izvori elektromagnetskog zračenja

  19. u(ν,T) = 4pI(ν,T) / c Plankov zakon

  20. Zračenje crnog tijela - Sjaj

  21. Sjaj elektromagnetskog zračenja različitih valnih dužina za crno tijelo na različitim temperaturama

  22. MASER

  23. Sinkrotronsko zračenje Polarizacojska svojstvaEM zračenja daju informacije o geometriji magnetskog polja

  24. Sinkrotronsko zračenje

  25. Zakon obrnutog kvadrata !

  26. Zabluda Radio program koji se ne sluša!

  27. Green Bank Telescope, WV Radio Teleskopi Dvije izvedbe: Very Large Array, NM Radio antena Polje radio antena

  28. The Very Large Array (VLA) • 1980 godine • Dvadest sedam 25-metarskih rekonfigurabilnihantena; Socorro, NM • Više publikacija od bilo kojeg teleskopa na svijetu

  29. Very Long Baseline Array (VLBA) • 1993 godine • Operirane oz Socorro-a • Deset 25-m antennas diljemSAD, Kanade, P.R. • Najviša rezolucija

  30. Počecieksperiment Janskog • Promatra nemodulirani doprinos RF (static) • Postepeno s mijenja intenzitet s • periodom od gotovo 24h • Sunce izvor? • maksimum 4 minute rani svaki dan • Izvor izvan Sunčeva sustava • Izvor u Mlječnoj stazi! • 1933 objavljuje rezultate Karl G. Jansky (1905-1950)

  31. Reberov tip radioteleskopa Despite the implications of Jansky’s work, both on the design of radio receivers, as well as for radio astronomy, no one paid much attention at first. Then, in 1937, Grote Reber, another radio engineer, picked up on Jansky’s discoveries and built the prototype for the modern radio telescope in his back yard in Wheaton, Illinois. He started out looking for radiation at shorter wavelengths, thinking these wavelengths would be stronger and easier to detect. He didn’t have much luck, however, and ended up modifying his antenna to detect radiation at a wavelength of 1.87 meters (about the height of a human), where he found strong emissions along the plane of the Milky Way.

  32. VLBA Reconfigurable Arrays: Zoom Lens Effect VLA • Više detektora – bolja rezolucija

  33. Radio Telescopes: Sensitivity • Sensitivity (how faint of a thing you can “see”) depends on how much of the area of the telescope/array is actually collecting data • VLA B-array: Total telescope collecting area is only 0.02% of land area • More spread-out arrays can only image very bright, compact sources

  34. Parabolic Dish Green Bank Telescope, WV • Aluminum reflecting surface • Focuses incoming waves to prime focus or sub-reflector Sub-reflector

  35. Sub-reflector Sub-reflector • Re-directs incoming waves to Feed Pedestal • Can be rotated to redirect radiation to a number of different receivers Feed Pedestal

  36. Feed Pedestal 1.5GHz 20cm 2.3GHz 13cm 4.8GHz 6cm 8.4GHz 4cm 14GHz 2cm 23GHz 1.3cm 43GHz 7mm 86GHz 3mm 327MHz 90cm 610MHz 50cm

  37. Antenna Feed and Receivers

  38. Benefits of Observing in the Radio • Track physical processes with no signature at other wavelengths • Radio waves can travel through dusty regions • Can provide information on magnetic field strength and orientation • Can provide information on line-of-sight velocities • Daytime observing (for cm-scale wavelengths anyway)

  39. Primary Astrophysical Processes Emitting Radio Radiation • Synchrotron Radiation • Charged particles moving along magnetic field lines • Thermal emission • Cool bodies • Charged particles in a plasma moving around • Spectral Line emission • Discrete transitions in atoms and molecules When charged particles change direction, they emit radiation

  40. Thermal Emission • Emission from warm bodies • “Blackbody” radiation • Bodies with temperatures of ~ 3-30 K emit in the mm & submm bands • Emission from accelerating charged particles • “Bremsstrahlung” or free-free emission from ionized plasmas

  41. Nobelova nagrada za otkriće kozmičkog mikrovalnog pozadinskog zračenja Robert Woodrow Wilson Arno Allan Penzias

  42. The Nobel Prize in Physics 1993 • for the discovery of a new type of pulsar, a discovery that has opened up new possibilities for the study of gravitation" Russell A. Hulse Joseph H. Taylor Jr

  43. Spectral Line emission: hyperfine transition of neutral Hydrogen Emits photon with a wavelength of 21 cm (frequency of 1.42 GHz) Transition probability=3x10-15 s-1 = once in 11 Myr

  44. Spectral Line emission: molecular rotational and vibrational modes • Commonly observed molecules in space: • Carbon Monoxide (CO) • Water (H2O), OH, HCN, HCO+, CS • Ammonia (NH3), Formaldehyde (H2CO) • Less common molecules: • Sugar, Alcohol, Antifreeze (Ethylene Glycol), … malondialdyde

  45. Sees shorter wavelength Sees longer wavelength Sees original wavelength Spectral Line Doppler effect • Spectral lines have fixed and very well determined frequencies • The frequency of a source will changed when it moves towards or away from you • Comparing observed frequency to known frequency tells you the velocity of the source towards or away from you

More Related