180 likes | 284 Views
Graphics Primitives in Processing. 1/14/2010. size(x, y) ;. Sets the initial size of the screen Units are in pixels Pixel == picture element Small dots on the size 1080p has resolution of 1920×1080. background(value); background(0); background(127); background(255);.
E N D
Graphics Primitives in Processing 1/14/2010
size(x, y) ; • Sets the initial size of the screen • Units are in pixels • Pixel == picture element • Small dots on the size • 1080p has resolution of 1920×1080
background(value); • background(0); • background(127); • background(255);
rect(x, y, width, height); rect(50, 20, 100, 100); x and y are the upper left corner rect(10, 10, 50, 50); rect(80, 70, 60, 110);
ellipse(x, y, width, height); ellipse(90, 90, 100, 100); x and y are the center ellipse(90, 90, 160, 160); ellipse(110, 120, 70, 30);
Order of Function Calls ellipse(70, 70, 110, 110); rect(80, 80, 100, 100); rect(80, 80, 100, 100); ellipse(70, 70, 110, 110);
Other Drawing Functions triangle(x1, y1, x2, y2, x3, y3); quad(x1, y1, x2, y2, x3, y3, x4, y4); curve(x1, y1, x2, y2, x3, y3, x4, y4); arc(x, y, width, height, start, stop);
Grayscale: fill(value); fill(0); rect(80, 80, 100, 100); fill(255); rect(80, 80, 100, 100); fill(0); ellipse(70, 70, 110, 110);
RGB Color • x,y,z is equivalent to r,g,b • Additive color model • Each parameter has a default range of 0-255 representing the intensity of light
Color: fill(value); • size(300,300); • background(255); • fill(0, 255, 0); • rect(25, 25, 100, 100); • fill(0, 0, 225); • rect(100, 100, 100, 100); • fill(255, 0, 0); • ellipse(225, 225, 110, 110);
Colors: stroke(value); stroke(0); rect(50, 20, 100, 100); stroke(255); fill(0); rect(50, 20, 100, 100);
Transparency fill(255); rect(80, 80, 100, 100); fill(0, 100); ellipse(70, 70, 110, 110); fill(255); rect(80, 80, 100, 100); fill(0, 10); ellipse(70, 70, 110, 110);
Other Color Functions noStroke(); noFill(); strokeWeight(weight);
In Class Lab • Lab 2: Draw three ellipses. Draw three bezier curves. Draw three rectangles. Create a composition using at least one of each of the following shapes: rectangle, ellipse, and curves.
Bézier Curves • Developed by engineer Pierre Bezier in the 70’s for Renault • Used in Adobe’s PostScript model • A cubic Bézier curve has 4 points: 2 end points and 2 control points • Demo at • http://demonstrations.wolfram.com/BezierCurves/ • http://www.idi.ntnu.no/~mlh/codebase/grafisk2/ • Jason Thielke
The Math Behind the Curves • Given a Bezier curve with endpoints (x0,y0) and (x3, y3), and control points (x1, y1) and (x2, y2). • 2 equations define points on the curve. Both are evaluated for values of 0 ≤ t ≤ 1. • x(t) = axt3 +bxt2 + cxt + x0 • y(t) = ayt3 +byt2 + cyt + y0 • See the curve being mapped in the demo below http://www.moshplant.com/direct-or/bezier/bezier.html
Homework 1 • Your assignment is posted in Moodle. • If you need help with Illustrator’s Bezier Curves implemented with the Pen Tool the Illustrator Help page for the Pen Tool will be helpful. • Remember that the terminology is different for Adobe’s Bezier curves: ie • Control Points are called Direction Points • End Points are called Anchor Points