1 / 26

H. Bovensmann , M. Buchwitz , M. Reuter, O. Schneising , K. Gerilowski , J.P. Burrows

Study Overview ESA Study CarbonSat Earth Explorer 8 Candidate Mission “Level-2 and Level-1B Requirements Consolidation Study“ ESA Contract N o 4000105676/12/NL/AF Final Presentation, 3.7.2013, ESTEC. H. Bovensmann , M. Buchwitz , M. Reuter, O. Schneising , K. Gerilowski , J.P. Burrows

azuka
Download Presentation

H. Bovensmann , M. Buchwitz , M. Reuter, O. Schneising , K. Gerilowski , J.P. Burrows

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Study Overview ESA Study CarbonSat Earth Explorer 8 Candidate Mission “Level-2 and Level-1B Requirements Consolidation Study“ ESA Contract No 4000105676/12/NL/AF Final Presentation, 3.7.2013, ESTEC H. Bovensmann, M. Buchwitz, M. Reuter, O. Schneising, K. Gerilowski, J.P. Burrows Institute of Environmental Physics (IUP), University of Bremen (UB), Bremen, Germany  H. Boesch, A. Geddes, University of Leicester, UK J. Landgraf, A. Galli, SRON, Utrecht, The Netherlands

  2. Overall Scene 1/2 1988: J.P. Burrows et al. proposed SCIAMACHY, incl. measurementsof CO2and CH4with 1% uncertaintyrequirement (similarreq. as GOSAT 20 yearslater …) 2008: SCIAMACHY XCO2achieves 1 % precisionand 1.5% biaserrors (Schneising et al. 2008) 2009/10: SCIAMACHY XCO2achievesbiases < 1 ppm andprecision < 3 ppm w.r.t. TCCON (Reuter et al. 2010 & 2011) Spring 2009: launchof GOSAT, launchfailureof OCO Spring 2009: CarbonSat initiatedwith national fundingfor Phase 0 activities Summer 2010: CarbonSatproposedto ESA as EEOM 3

  3. Overall Scene 2/2 November 2010: CarbonSatand FLEX selectedasthetwo EE8 candidatemissions Spring 2011: CarbonSat Mission Advisory Group formed Feb. 2012: CarbonSat L1L2 Consolidation Study KO March 2012: CarbonSat Inverse Modelling Study KO April/May 2012: Two Phase A/B1 Industry Studies KO August/September 2012: 1st CS relatedcampaign (C-MAPExp) C-MIN 2012: reducedbudgetfor EOEP-4 July 2013: Final Presentations Phase 1 Science Studies Around 2015: Mission Selection (TBC ESA) 4

  4. ESA Evaluation Report on CarbonSat (Oct. 2010) • „First dedicated European missionwhichaddressesthemainuncertaintiesofthecarboncycle. • The proposalhasan excellentanddetaileddiscussionofthespacesegementelements in particularfortheinstruments. • The technicalconceptisconsidered a soundbaselinefor a Phase A study. • The timeliness wr.t. usersneedsisexcellent. • Overall the CS missionis an innovative mission. • The costofthespacesegment, incl. dedicatedimager … isexpectedtoexceedtheceilingset in the EE8 call.“ 5

  5. CarbonSat EE8 Proposal Team 6

  6. CarbonSat Mission Goals CarbonSat aims at better separating natural and anthropogenic fluxes via high spatial resolution & good coverage atmospheric XCO2 and XCH4 data (secondary products: vegetation fluorescence, …)and “GHG imaging” of strong localized CO2 and CH4 emission sources. In combination with inverse modeling and robust validation (TCCON) this will provide: • Better top-down constraints on • regional / country scale (mainly natural) fluxes (sources and sinks) (e.g., SCIAMACHY, GOSAT, OCO-2, …) • city scale emissions (e.g., Buchwitz et al., 2013) • point source emissions (e.g., Bovensmann et al., 2010) Power plant CO2plume Paris cityCO2plume Figure: LSCE 7 kT CO2 for 2009

  7. Disentanglingnaturalandanthropogenicfluxes … … usingatmosphericmeasurementsfromspace: • Spatialpattern • Seasonalvariation • Correlationwithothertracegases (CO, NOx, Alkanes etc.) => synergywith S5P/S5 • Diurnal variation => constellationor GEO • Isotopes 8

  8. CarbonSat: Spatialresolution & coverage Berlin Germany 9

  9. CarbonSat Mission Requirements High quality column-averaged mixing ratios • XCO2: • 1- 3 ppm prec. (single meas.) • < 0.5 ppm bias • XCH4: • 6 - 12 ppb prec. (single meas.) • < 5 ppb bias High spatial resolution and good coverage: • ~ 2 km ground pixel, • ~ 240 km swath width (goal 500 km) • covers globe 3 times per month Orbit: LEO Sun-synchronous, around 11:30 LT Modes: • Nadir imaging (main); for land & ocean • Sun-glint; for optimised signal over ocean • Mission Lifetime: 3-5 years • Validation and Inverse Modelling 13.500.000 3.100.000 NadirSun-glint 10

  10. XCO2 O2 CO2 H L XCO2 = CO2column-averaged mixing ratio 11

  11. Atmospheric Scattering CO2 O2 Cloud Aerosol 12

  12. Atmospheric Scattering CO2 O2 Cloud Aerosol 13

  13. The challenge 14

  14. CarbonSat: Spectralcoverage CO2, CH4 surface Clouds, aerosols, surface, vegetationfluorescence, … CO2, H2O, aerosols, cirrus, surface … 15

  15. CarbonSat Instrument Concept Dispersing element FWHM: 0.1 nm Re-imaging lens Spectral radiance Collimator Slit 0.35 nm l 2D array detector Telescope l 0.55 nm x • Imaging grating spectrometer, high SNR, 2-D detectors cooled • Push-broom (across track), along track scanning via spacecraft motion • Good spatial and spectral imaging capabilities • High performance on-board calibration sources (diffusers, lamp, LED, tbc) • Based on SCIAMACHY, GOSAT, OCO and lessons learned Ground swath Spacecraft motion 16

  16. Development ofsome Key Requirements • MRD 1.1 (March 2012): • Swath width: 500 km (G) / 240 km (B) / 160 km (T) • Remove constellation with S3, but need for cloud/aerosol support remains • MRD 1.2 (May 2013): • Modificationof L2 and L4 requirements (seeLogoFlux Study) • Reduce spectral resolution O2-A-band and SWIR-2 • Higher SNR and wider spectral ranges to maintain XCO2, XCH4 • Include High Spatial Sampling (Rapid Readout Imaging (RRI)) • Adapteddynamicrange • spatialresolution:6 km2 (T) / 4 km2 (B) / 1 km2 (G) 17

  17. Project Objectives The main objective of this study is to consolidate* Level 1b and Level 2 requirements for the CarbonSat Earth Explorer 8 Candidate Mission using quantitative modelling and retrieval studies. * Agency‘sinterpretation: Can wegetitcheaper/lesscomplex … * Scientist‘sinterpretation: Can wegetitbetter … 18

  18. Main Activities • Literaturereview • Optimise Level 1 to Level 2 algorithms w.r.t. CS (nadir, partiallyglint, treatmentofscatterers, fluorescence, etc.) • Establishsimulationframework • Perform (retrieval) simulationsoptimise Level 1 requirements • SNR, spectralresolution, spectralcoverage • Radiometricrequirements, co-registration etc. • Reference spectra • Support ESA w.r.t. Phase A • CompareCarbonSatwithothermissions • Generate 1 yearsimulated CarbonSat XCO2and XCH4 (withLogoFlux) • Establishpreliminaryerrorbudget 19

  19. WorkpackageOverview • WP 1000 Literature Review • WP 2000 Level 2 Mission Science Requirements Consolidation • WP 3000 Dedicated Trade-offs and specific studies • Set-up and adapt simulation tools (WP 3100) • GHGs and C&A: stand alone capability / external info for correction/flagging (WP 3200/3300) • Trade-off between SNR, spatial and spectral sampling (WP 3400) • Reference Radiance Scenes (WP 3500) • Validation Strategy using TCCON (WP 3600) • WP 4000 Level 1 Mission Observational Requirements Consolidation • Set-up and adapt the retrieval simulation tool (WP 4100) • Performance Simulations (WP 4200) • Level 1 mission requirements consolidation (WP 4300) • WP 5000 Phase A/B1 system Study Support • WP 6000 Comparing CarbonSat with other relevant missions • WP 7000 Management, Conclusions and Recommendations 20

  20. Project Schedule • KO 1. Feb. 2012 ESA, Telecon • PM#1 12. June 2012 University of Bremen • MTR 4./5. Oct. 2012 ESA ESTEC • PM#2 4. Feb. 2013 University of Bremen • FP 3. July 2013 ESA ESTEC + several “ad hoc” telecons, expert meetings etc. 21

  21. CS L1L2 FP 3.7.2013: Agenda 1/2 • Welcome & Introduction (ESA, 10 min.) • Study Overview (IUP, 30 min.) • Consolidation of SNR, spectral resolution and coverage (60 min.) • Retrieval simulations XCO2 and XCH4 with focus clouds and aerosol (IUP, 30 min.) • Independent verification of retrieval simulations (UoL, 15 min.) • Independent verification using GOSAT data (SRON, 15 min.) • Level 2 XCO2 and XCH4 Performance w.r.t. Clouds & Aerosol (60 min.) • Overview and preliminary error budget (IUP, 10 min.) • Nadir – from scenarios to global scale (IUP, 20 min.) • Glint – from scenarios to global scale (UoL, 15 min.) • XCH4 and XCO2 validation using TCCON (IUP, 10 min.) 22

  22. CS L1L2 FP 3.7.2013: Agenda 2/2 • Level 1 Mission Requirement Consolidation (60 min.) • Spectral Requirements, incl. G-Matrix and PN (IUP, 15 min) • Radiometric requirements (UoL, 10 min.) • Spatial/temporal co-registration (SRON, 15 min.) • High spatial resolution sampling for cloud and aerosol correction/flagging (IUP, 15 min.) • Performance w.r.t. secondary products (30 min.) • Vegetation Chlorophyll Fluorescence (IUP) • Aerosol profile, surface pressure (UoL) • Other potential secondary products (UoL) • CarbonSat in comparison to other missions (IUP, 15 min.) • Summary and Recommendations (IUP, 20 min.) 23

  23. Thanks! • M. Buchwitz, M. Reuter, O. Schneising, J. Heymann, D. Pillai,, K. Gerilowski, T. Krings, S. Krautwurst, S. Noel, K. Bramstedt, A. Rozanov, V. Rozanov, T. Warneke, J. Notholt, John P. Burrows (IUP) • J. Marshall, M Heimann (MPI-BGC) • H. Boesch (Uni. Leicester) • D. Crisp (JPL) • F.M. Breon (LSCE) • J. Landgraf (SRON) • T. Sachs, J. Erzinger (GFZ) • Y. Meijer, P. Ingmann, D. Schüttemeyer, B. Sierk, A. Löscher, J. L. Bezy (ESA) • CarbonSatFundingAgencies: 24

  24. ESA Earth Explorer 8 Candidate Mission THANK YOU

More Related