1 / 31

Plasma diagnostics using spectroscopic techniques

Plasma diagnostics using spectroscopic techniques. Timo Gans. York Plasma Institute. YPI – Low temperature plasma activities. Plasma dynamics & chemical kinetics Advanced plasma diagnostics Special emphasis on optical diagnostics & laser spectroscopy.

baba
Download Presentation

Plasma diagnostics using spectroscopic techniques

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Plasma diagnostics using spectroscopic techniques Timo Gans York Plasma Institute

  2. YPI – Low temperatureplasmaactivities • Plasma dynamics & chemical kinetics • Advanced plasma diagnostics • Special emphasis on optical diagnostics & laser spectroscopy • Modelling& numerical simulations • Technological exploitations • Special emphasis on plasma medicine, plasma etching, plasma deposition

  3. Plasmas & other disciplines • Optics • Atomic & MolecularPhysics • Laser Physics • Surface Science • Electro Dynamics • Statistics • NumericalSimulations • Electrical Engineering • Chemistry • Bio-medicalSciences

  4. Plasma – Complex Multi-Particle System Whatis a plasma? • ionised gas withvarietyofparticles • electrons • positive and negative ions • neutral particles(atoms, molecules, radicals) • excitedspecies • dustparticles What do weliketomeasure? • densities • distributionfunctions (temperatures) • electricandmagneticfields

  5. Challenges & opportunities • Multiphase interfaces: • Plasma – gas – liquid – surface (solid) • Multispecies: • Electrons, pos. ions, neg. ions, neutrals, radicals, excitedspecies, photons • Multiscale problem – time: • Electron dynamics: ps – ns • Ion dynamics: 100 ns – μs • Plasma chemistry: 100 μs – ms • Surface chemistry: s – min • Multiscale problem – space: • Surface structures: nm – μm • Charged particle gradients: μm – m • Neutral particle gradients: 10 μm – m

  6. How do we measure plasma quantities? Electricaldiagnostics • chargedparticlesandfields • externalcurrentandvoltagemeasurements • simple • non-intrusive • indirect • modelbased • global informationonly • probe measurements • simple • localinformation • direct • modelbased • reactiveenvironment (gases) • intrusive

  7. How do we measure plasma quantities? Massspectrometry • neutral particlesandions • energydistributionfunctions • non-intrusive • direct • complicated in detail • externalmeasurement • reactivegases

  8. Plasma physics Optical diagnostics Atomic & molecular physics How do we measure plasma quantities? Optical diagnostics • in principle all plasmaparameters • non-intrusive • high temporal andspatialresolution

  9. Optical Diagnostics • Emission spectroscopy • passive • simple • robust • indirect • modelbased • dataneeded • Laser spectroscopy • direct • highlyreliable • active • involving • expensive  Combinationof passive andactivemethods

  10. Typical OES set-up

  11. Optical Emission Spectroscopy (OES) lineemission • whichemissionlines (qualitative) • species • absolute intensities (calibrationdifficult) • densityofexcitedspecies • lineratios • robust modelbasedanalysis (thislecture!) • lineshapes (high experimental requirements) • temperatures, fields, densities • temporal variations • plasmadynamics continuumradiation • spectraldistributions • absolute intensities

  12. Plasma concepts - CTE Completethermodynamicequilibrium (CTE) • homogeneity • uniquetemperature (Te = Ti = Tgas) • blackbodyradiation • Maxwell – Boltzmann distribution

  13. Plasma concepts - CTE Maxwell – Boltzmann distribution • populationdistributions • Spectroscopy: lineintensitiesandratios • velocitydistribution • Spectroscopy: lineshape, e.g. Doppler effect

  14. Plasma concepts - CTE Main constraintsandlimitations • inhomogeneities • Planck • Localthermodynamicequilibrium?

  15. Plasma concepts - LTE Localthermodynamicequilibrium (LTE) • localparameters • collisiondominated • equilibriumofcollisions • noequilibriumofradiation • requirement • example (hydrogen arc) ne = 1016 cm-3, Te 104 K • (Ek - Ei)LTE 4 eV • Partial LTE

  16. Plasma concepts - PLTE Partial localthermodynamicequilibrium (PLTE) • overpopulationofthegroundstate • LTE forexcitedstates • constraintsandlimitations • lowelectrondensities • Corona model • collisional radiative models

  17. Plasma concepts - Corona Corona model modelforplasmaswith "low" electrondensities(ne < 1013 cm-3) applicabletomosttechnologicalplasmas farfromthermodynamicequilibrium mostparticlesare in thegroundstate electronimpactexcitation=relaxationbyradiation (spontaneousemission)

  18. Plasma concepts - Corona Corona model electronimpactexcitation=relaxationbyradiation (spontaneousemission) ni : populationdensityofstate i Aik: spontaneousemission rate nPh,i: photons per unitvolumeand time

  19. Plasma concepts - Corona n0 : groundstatedensity Ei : electronimpactexcitation rate ofstate i, (depending on neandTe) i : electronimpactexcitationcross-sectionofstate i f(E): normalised EEDF i : radiativelifetime

  20. Plasma concepts - Corona steadystateofexcitedstates aik : branchingratio RF - discharges

  21. Corona: cascade transitions Additional excitation and de-excitation processes • applicable to most technological plasmas • cascades from higher electronic states • one dominating or effective cascade state nc= ? Aci: transition rate fromthecascadestate c nc : populationdensitiesofthecascadestate c

  22. Corona: cascade transitions neglectingsecondordercascades: Determination of Ecisdifficult(reabsorption!)

  23. Corona: stepwise excitation excitation out ofmetastablestates • long lifetimes of metastable states • transport problem • plasma wall interaction • complex • avoidthrough proper choiceofstate i withsmallcross-sectionsforexcitation out ofmetastablestates (smallEi,m) • turn intodiagnosticsofmetastablestatesbycomparingwithstatesexcited out ofmetastablelevels

  24. Corona: collisional de-excitation collisional de-excitation (quenching) A* + Q  ? • especiallyimportantat high pressures! kq: quenchingcoefficientwithspecies Q nq : densityofspecies Q

  25. Corona: collisional de-excitation q : quenchingcross-section, Tgasindepedent Tgas: gas temperature <v> : meanvelocity  : reducedmass • Importance of Tgas • Which quenching partners are present? • What are the densities?

  26. Which emission line should I analyse? selectionrulesforemissionlines • goodqualityofelectronimpactexcitationcross-sections (same source!) • negligibleexcitation out ofmetastables • smallcascadecontribution • shortlifetimes • competitionwithquenching • high intensities • high temporal resolution • knownquenchingcoefficient (bettersmall) • noexcitationtransferwithotherspecies • nospectraloverlapwithotheremission

  27. Actinometry & Limitations Direct excitation: Dissociative excitation:

  28. Influence of theEEDF

  29. Time & space dependence of the EEDF

  30. Comparison with laser spectroscopy N Knake, et al., APL, 93 (2008) 131503 K NIEMI, et al., Appl. Phys. Lett. 95 (2009) 151504

  31. Thank you! York Plasma Institute

More Related