400 likes | 597 Views
Part I: EEG and MEG Inverse dipole fit and Deviation scan approaches. 20.05.2014 Carsten Wolters. [Wolters, Vorlesungsskriptum , Chapter 8.1] . EEG/MEG inverse dipole fit approaches. [Wolters, Vorlesungsskriptum , Chapter 8.1] . EEG/MEG inverse dipole fit approaches.
E N D
Part I: EEG and MEG Inverse dipole fit and Deviation scan approaches 20.05.2014 Carsten Wolters
[Wolters, Vorlesungsskriptum, Chapter 8.1] EEG/MEG inversedipole fit approaches
[Wolters, Vorlesungsskriptum, Chapter 8.1] EEG/MEG inversedipole fit approaches
[Wolters, Vorlesungsskriptum, Chapter 8.1] EEG/MEG inversedipole fit and deviationscanapproaches
[Wolters, Vorlesungsskriptum, Chapter 8.1] EEG/MEG inversedipole fit and deviationscanapproaches
[Wolters, Vorlesungsskriptum, Chapter 8.3.1] EEG/MEG inversedipole fit approaches
[Wolters, Vorlesungsskriptum, Chapter 8.3.1] EEG/MEG inversedipole fit approaches
[Wolters, Vorlesungsskriptum, see subsection “Optimization” in Chapter 4.5.1] Reminder: Nelder-Meadoptimizationfor image registration: Thecostfunction
[Wolters, Vorlesungsskriptum, see subsection “Optimization” in Chapter 4.5.1] • Reminder: Nelder-Meadoptimizationfor image registration: Theoptimizationalgorithm
[Wolters, Vorlesungsskriptum, see subsection “Optimization” in Chapter 4.5.1] • Reminder: Nelder-Meadoptimizationfor image registration: Theoptimizationalgorithm
[Wolters, Vorlesungsskriptum, see subsection “Optimization” in Chapter 4.5.1] • Reminder: Nelder-Meadoptimizationfor image registration: Theoptimizationalgorithm
[Wolters, Vorlesungsskriptum, Chapter 8.3.1] EEG/MEG inversedipole fit approaches
[Wolters, Vorlesungsskriptum, Chapter 8.3.2] Global optimizationusingSimulatedAnnealing (SA)
[Wolters, Vorlesungsskriptum, Chapter 8.3.2] • Global optimizationusingSimulatedAnnealing (SA)
[Wolters, Vorlesungsskriptum, Chapter 8.3.2] Global optimizationusingSimulatedAnnealing (SA)
[Wolters, Vorlesungsskriptum, Chapter 8.3.2] Global optimizationusingSimulatedAnnealing (SA)
[Wolters, Vorlesungsskriptum, Chapter 8.3.3] Dipole fit and deviationscanapproaches: Determination of the linear parameters
[Wolters, Vorlesungsskriptum, Chapter 8.3.3] • Dipole fit and deviationscanapproaches: Determination of the linear parameters
[Wolters, Vorlesungsskriptum, Chapter 8.3.3] • Dipole fit and deviationscanapproaches: Determination of the linear parameters
[Wolters, Vorlesungsskriptum, Chapter 8.3.3] • Dipole fit and deviationscanapproaches: Determination of the linear parameters
[Wolters, Vorlesungsskriptum, Chapter 8.3.3] • Dipole fit and deviationscanapproaches: Determination of the linear parameters
[Wolters, Vorlesungsskriptum, Chapter 8.3.3] • Dipole fit and deviationscanapproaches: Determination of the linear parameters
[Wolters, Vorlesungsskriptum, Chapter 8.3.3] [Wolters, Beckmann, Rienäcker, Buchner, Brain Topography, 1999] • Dipole fit and deviationscanapproaches: Determination of the linear parameters
[Wolters, Vorlesungsskriptum, Chapter 8.3.3] [Wolters, Beckmann, Rienäcker, Buchner, Brain Topography, 1999] • Dipole fit and deviationscanapproaches: Determination of the linear parameters
[Wolters, Vorlesungsskriptum, Chapter 8.3.3] [Wolters, Beckmann, Rienäcker, Buchner, Brain Topography, 1999] • Dipole fit and deviationscanapproaches: Determination of the linear parameters
[Wolters, Vorlesungsskriptum, Chapter 8.3.3] [Wolters, Beckmann, Rienäcker, Buchner, Brain Topography, 1999] • Dipole fit and deviationscanapproaches: Determination of the linear parameters
[Wolters, Vorlesungsskriptum, Chapter 8.3.3] [Wolters, Beckmann, Rienäcker, Buchner, Brain Topography, 1999] • Dipole fit and deviationscanapproaches: Determination of the linear parameters
[Aydin, Vorwerk, Küpper, Heers, Kugel, Galka, Hamid, Wellmer, Kellinghaus, Rampp, Wolters, Plos One, 2014] Single Dipole Deviation Scan (SDDS) and calibration
T1, T2, DTI 27 minutes! • Medianus nerve stimulation7 minutes! • Skull Conductivity • High interindividual variance • EEG very sensitive • MEG farless sensitive • Sub-averages: SNR (>3) Aydin et al., 2014,PLoS ONE
Segmentation White Matter Gray Matter CSF Outer skull T1 MRI Skin Segmented MRI Spongiosa T2 MRI Inner skull FAST BETSURF FLIRT MATLAB
InclusionofAnisotropy T2 MRI b0- Warp-Field Susceptibility Corrected DW-MRI White Matter Gray Matter b0+ EC Corrected D1,…D20 Diffusion Tensors FA D1,…D20 Conductivity Tensors FLIRT FAIR (Ruthotto et al, 2012) DTIFIT MATLAB
Geometrically adapted 6 compartment hexahedral finite element head model Geometrically adapted SimBio-VGRID Mesh SimBio Forward
Use 22ms component of Somatosensory Evoked Potentials (SEP) and Fields (SEF) EEG MEG MEG EEG
SEP/SEF localizationdifferencesforthe different headmodelsfrom Table 1