1 / 28

Sébastien GALAIS Institut de Physique Nucléaire Orsay

Shockwave in Supernovae: New Implications on the Diffuse Supernova Neutrino Background NDM09, Madison. Sébastien GALAIS Institut de Physique Nucléaire Orsay SG, J. Kneller, C. Volpe and J. Gava, arxiv:0906.5294 [hep-ph]. Outline. Introduction Theoretical framework

baka
Download Presentation

Sébastien GALAIS Institut de Physique Nucléaire Orsay

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Shockwave in Supernovae:New Implications on the Diffuse Supernova Neutrino BackgroundNDM09, Madison Sébastien GALAIS Institut de Physique Nucléaire Orsay SG, J. Kneller, C. Volpe and J. Gava, arxiv:0906.5294 [hep-ph]

  2. Outline • Introduction • Theoretical framework • relic supernova neutrinos fluxes • neutrino propagation in supernova • shockwave effects • Results on the DSNB fluxes and event rates • A simplified model to account for the shockwave • Conclusion

  3. Introduction Recent developments in neutrino propagation in SN: • The  interaction. After the explosion of the star, the neutrinos density is so high that neutrinos interact each other giving rise to collective effects like synchronization, bipolar oscillations and spectral split. • - J. T. Pantaleone, Phys. Rev. D 46 510 (1992). • S. Samuel, Phys. Rev. 48, 1462 (1993). • G. Sigl and G. G. Raffelt, Nucl. Phys. B 406 423 (1993). • Y. Z. Qian and G. M. Fuller, Phys. Rev. D 51 1479 (1995). • - S. Pastor, G. G. Raffelt, and D. V. Semikoz, Phys. Rev. 65, 053011 (2002), 0109035. • - H. Duan, G. M. Fuller, J. Carlson, and Y.-Z. Qian, Phys. Rev. 74, 105014 (2006), 0606616. • - S. Hannestad, G. G. Raffelt, G. Sigl, and Y. Y. Y. Wong, Phys. Rev. 74, 105010 (2006), 0608695. • - A. B. Balantekin and Y. Pehlivan, J. Phys. 34, 47 (2007), 0607527. • - G. G. Raffelt and A. Y. Smirnov, Phys. Rev. 76, 125008 (2007), 0709.4641. • - …

  4. Introduction 2. The shockwave effects. The shock propagates through the matter in which it will modify the density profile and therefore the MSW resonance. • - R. C. Schirato and G. M. Fuller (2002), 0205390. • - C. Lunardini and A. Y. Smirnov, JCAP 0306, 009 (2003), 0302033. • - K. Takahashi, K. Sato, H. E. Dalhed, and J. R. Wilson, Astropart. Phys. 20, 189 (2003), 0212195. • - G. L. Fogli, E. Lisi, A. Mirizzi, and D. Montanino, Phys. Rev. 68, 033005 (2003), 0304056. • - R. Tomas, M. Kachelrieß, G. Raffelt, A. Dighe, H.-T. Janka, and L. Scheck, JCAP 0409, 015 (2004), 0407132. • - G. L. Fogli, E. Lisi, A. Mirizzi, and D. Montanino, JCAP 4, 2 (2005), 0412046. • - S. Choubey, N. P. Harries, and G. G. Ross, Phys. Rev. D74, 053010 (2006), 0605255. • - B. Dasgupta and A. Dighe, Phys. Rev. 75, 093002 (2007), 0510219. • - S. Choubey, N. P. Harries, and G. G. Ross, Phys. Rev. 76, 073013 (2007), 0703092. • - J. P. Kneller, G. C. McLaughlin, and J. Brockman, Phys. Rev. 77, 045023 (2008), 0705.3835. • J. P. Kneller and G. C. McLaughlin, Phys. Rev. 73, 056003 (2006), 0509356. • …

  5. Introduction 3. Progress on the Diffuse Supernova Neutrino Background (DSNB). There have been many progresses on the ingredients of the DSNB such as star formation rate, initial mass function. • … • - I.K. Baldry and K. Glazebrook, Astrophys. J. 593, 258 (2003). • - S. Ando and K. Sato, New Journal of Physics 6, 170 (2004), 0410061. • - L. E. Strigari, J. F. Beacom, T. P. Walker and P. Zhang, JCAP 0504, 017 (2005), 0502150. - C. Lunardini, Astroparticle Physics 26, 190 (2006), 0509233. • H. Yüksel and J. F. Beacom, Phys. Rev. 76, 083007 (2007), 0702613. • - S. Chakraborty, S. Choubey, B. Dasgupta, and K. Kar, JCAP 0809, 013 (2008), 08053131. • - …

  6. Goal of our work Our aim is to explore the shockwave effects upon the Diffuse Supernova Neutrino Background.

  7. Theoretical framework Diffuse Supernova Neutrino Background (DSNB) flux at Earth. • z: redshift • : energy of the neutrino at emission (neutrinosphere) • RSN: core-collapse supernova rate per unit comoving volume • : differential spectra emitted by the supernova Flat universe and ΛCDM model: ΩΛ=0.7 Ωm=0.3 H0=70 km s-1 Mpc-1 Supernova Rate RSN.

  8. Theoretical framework Star Formation Rate (RSF). Star formation rate RSF from [1], where RSF is divided in three parts. with [1] H. Yuksel, M. D. Kistler, J. F. Beacom, and A. M. Hopkins, Astrophys. J. 683, L5 (2008).

  9. Theoretical framework: the  propagation The method used. 1. We use a 3 flavour code in which we solve the propagation of the  amplitudes. We include the  interaction (single angle approximation). 1. Synchronized region. 2. Bipolar oscillations. 3. Spectral split. Inverted hierarchy. J. Gava, C. Volpe, Phys.Rev.D78:083007(2008), 0807.3418.

  10. Theoretical framework: the  propagation 2. The shockwave effects are included using temporally evolving density profiles, following what is done in [1]. Finally we suture together the results of the two steps by multiplying in time order the evolution operators rather than probabilities, following what first done in [2]. This gives our at the supernova. [1] J. Kneller, G. McLaughlin, J. Brockman, Phys.Rev.D77:045023(2008), 0705.3835. [2] J. Gava, J. Kneller, C. Volpe, and G. C. McLaughlin(2009), 0902.0317.

  11. Shockwave effects in supernovae Evolution of the density profile with time in the MSW region. Without . 1. Before the shock (adiabatic  propagation). 2. The shock arrives (non-adiabatic prop.). 3. Phase effects appear. 4. Post-shock propagation. With . E=20 MeV

  12. RESULTS: relic electron (anti-)neutrino fluxes results for 13 large are valid for the range: For 13 we take: 13= 5.73x10-3 ° (case S). 13 = 0.573° (case L). Normal Hierarchy for . Inverted Hierarchy for . (MeV-1 cm-2 s-1) (MeV-1 cm-2 s-1)  + shock.  + shock.  + no shock.  + no shock. 13 Small. 13 Small.

  13. RESULTS: relic electron (anti-)neutrino fluxes Here is plotted the ratio NH IH  + shock.  + no shock.  + shock.  + no shock. Shockwave impact: •  10-20% effect from numerical caculations. • analytical results (without shock) are 20% off.

  14. DSNB event rates in -observatories Water Cerenkov and scintillator detectors. per kTon per year Argon detectors.

  15. DSNB event rates in -observatories Water Cerenkov and scintillator detectors. per kTon per year Argon detectors. • 10-15% variation between S and L.

  16. DSNB event rates in -observatories Water Cerenkov and scintillator detectors. per kTon per year Argon detectors. • 10-15% variation between S and L. • Loss of the sensitivityto collective effects in the L case.

  17. Why are collective effects unobservable for case L + shock? • Coincidence due to the chosen values: • cooling time:   3.5 s. • arrival time of the shock at the H-resonance: ts 2 s The time integrated spectrum is composed of 50% ‘hot’ spectrum and 50% ‘cold’ without nn interaction and the opposite with nn interaction. What happens if we change the cooling time and/or the arrival time?

  18. A simplified model to account for the shockwave Here we propose a simplified model to calculate the flux: 1. From the numerical evolution of , we extract the 3 times. ts: shock arrives tp: phase effects t∞: post-shock 2. We average the value of in each part because is  independent of the  energy.

  19. A simplified model to account for the shockwave Here we propose a simplified model to calculate the flux: 1. From the numerical evolution of , we extract the 3 times. ts: shock arrives tp: phase effects t∞: post-shock 2. We average the value of in each part because is  independent of the  energy.

  20. A simplified model to account for the shockwave Evolution of times with energy. This model: • is based upon the general behaviour of the shockwave in supernova. • can be used in future calculations of DSNB fluxes and rates to include shockwave effects.

  21. Modification of the parameters Variation of the cooling time . Luminosity decreases like: Addition of a temporal offset t to ti. Change the arrival time of the shock. Results are robust to variations of the cooling time and the arrival time.

  22. Conclusions • First complete calculation with  interaction and shockwave for relic supernova neutrinos. • The shock affects significantly the DSNB fluxes and event rates. SG, J. Kneller, C. Volpe and J. Gava, arxiv:0906.5294 [hep-ph]

  23. THANK YOU

  24. Future observatories MEMPHYS Water Cerenkov detector with a fiducial mass of 440 kTon. Main detection channel: LENA Liquid Scintillator detector with a fiducial mass of 50 kTon (20% of C16H18 + 80% of C12H26). Main detection channel: GLACIER Liquid Argon detector with a fiducial mass of 100 kTon. Detection channel: LAGUNA design study (2008-2010 in FP7)

  25. Our predictions for future observatories after 10 years Average events IH NH

  26. Simplified model VS Numerical calculation Here is plotted the ratio

  27.  interaction as a pendulum S. Hannestad, G. G. Raffelt, G. Sigl, and Y. Y. Y. Wong, Phys. Rev. 74, 105010 (2006), 0608695.

More Related