260 likes | 276 Views
Learn about accuracy and precision in measurements, significant figures, scientific notation, and SI units in this comprehensive guide. Improve your understanding of measurement techniques and calculations.
E N D
CH. 2 - MEASUREMENT Using Measurements
A. Accuracy vs. Precision • Accuracy - how close a measurement is to the accepted value • Precision - how close a series of measurements are to each other ACCURATE = CORRECT PRECISE = CONSISTENT
C. Significant Figures • Indicate precision of a measurement. • Recording Sig Figs • Sig figs in a measurement include the known digits plus a final estimated digit 2.32 cm
C. Significant Figures • Counting Sig Figs • Count all numbers EXCEPT: • Leading zeros -- 0.0025 • Trailing zeros without a decimal point -- 2,500 • USA??
C. Significant Figures Counting Sig Fig Examples 1. 23.50 1. 23.50 4 sig figs 3 sig figs 2. 402 2. 402 3. 5,280 3. 5,280 3 sig figs 2 sig figs 4. 0.080 4. 0.080
3 SF C. Significant Figures • Calculating with Sig Figs • Multiply/Divide - The # with the fewest sig figs determines the # of sig figs in the answer. (13.91g/cm3)(23.3cm3) = 324.103g 4 SF 3 SF 324g
C. Significant Figures • Calculating with Sig Figs (con’t) • Add/Subtract - The # with the lowest decimal value determines the place of the last sig fig in the answer. 3.75 mL + 4.1 mL 7.85 mL 3.75 mL + 4.1 mL 7.85 mL 7.9 mL
C. Significant Figures • Calculating with Sig Figs (con’t) • Exact Numbers do not limit the # of sig figs in the answer. • Counting numbers: 12 students • Exact conversions: 1 m = 100 cm • “1” in any conversion: 1 in = 2.54 cm
5. (15.30 g) ÷ (6.4 mL) 2.4 g/mL 2 SF C. Significant Figures Practice Problems 4 SF 2 SF = 2.390625 g/mL • 18.9 g • - 0.84 g 18.1 g 18.06 g
D. Scientific Notation • Converting into Sci. Notation: • Move decimal until there’s 1 digit to its left. Places moved = exponent. • Large # (>1) positive exponentSmall # (<1) negative exponent • Only include sig figs. 65,000 kg 6.5 × 104 kg
7. 2,400,000 g 8. 0.00256 kg 9. 7 10-5 km 10. 6.2 104 mm D. Scientific Notation Practice Problems 2.4 106 g 2.56 10-3 kg 0.00007 km 62,000 mm
EXE EXP EXP ENTER EE EE D. Scientific Notation • Calculating with Sci. Notation (5.44 × 107 g) ÷ (8.1 × 104 mol) = Type on your calculator: 5.44 7 8.1 4 ÷ = 671.6049383 = 670 g/mol = 6.7 × 102 g/mol
E. SI Units Quantity Symbol Base Unit Abbrev. Length l meter m Mass m kilogram kg Time t second s Temp T kelvin K Amount n mole mol
M V D = F. Derived Units • Combination of base units. • Volume (m3 or cm3) • length length length 1 cm3 = 1 mL 1 dm3 = 1 L • Density (kg/m3 or g/cm3) • mass per volume
Problem-Solving Steps 1. Analyze 2. Plan 3. Compute 4. Evaluate
Density • An object has a volume of 825 cm3 and a density of 13.6 g/cm3. Find its mass. GIVEN: V = 825 cm3 D = 13.6 g/cm3 M = ? WORK: M = DV M = (13.6 g/cm3)(825cm3) M = 11,200 g
WORK: V = M D V = 25 g 0.87 g/mL Density • A liquid has a density of 0.87 g/mL. What volume is occupied by 25 g of the liquid? GIVEN: D = 0.87 g/mL V = ? M = 25 g V = 29 mL
kilo- mega- M k 106 103 deci- BASE UNIT d --- 100 10-1 centi- c 10-2 milli- m 10-3 micro- 10-6 nano- n 10-9 pico- p 10-12 SI Prefix Conversions Prefix Symbol Factor move left move right
SI Unit Conversions • King Henry Died__drinking chocolate milk • K H D __ d C M
NUMBER = UNIT SI Prefix Conversions 0.532 532 m = _______ km NUMBER UNIT
1) 20 cm = ______________ m 2) 0.032 L = ______________ mL 3) 45 m = ____ mm 4) 805 dm = ______________ km SI Prefix Conversions 0.2 32 45,000 0.0805
Dimensional Analysis • Steps: 1. Identify starting & ending units. 2. Line up conversion factors so units cancel. 3. Multiply all top numbers & divide by each bottom number. 4. Check units & answer.
Dimensional Analysis • Lining up conversion factors: = 1 1 in = 2.54 cm 2.54 cm 2.54 cm 1 = 1 in = 2.54 cm 1 in 1 in
qt mL Dimensional Analysis • How many milliliters are in 1.00 quart of milk? (1L = 1.057 qt) 1 L 1.057 qt 1000 mL 1 L 1.00 qt = 946 mL
lb cm3 Dimensional Analysis • You have 1.5 pounds of gold. Find its volume in cm3 if the density of gold is 19.3 g/cm3. (1 kg = 2.2 lbs) 1 cm3 19.3 g 1 kg 2.2 lb 1000 g 1 kg 1.5 lb = 35 cm3
cm in Dimensional Analysis • Your European hairdresser wants to cut your hair 8.0 cm shorter. How many inches will he be cutting off? (1 in=2.54cm) 8.0 cm 1 in 2.54 cm = 3.2 in