1 / 31

First Principles Studies of Defects in HfO 2 and at Si:HfO 2 Heterojunctions

Ph.D. Dissertation Proposal. First Principles Studies of Defects in HfO 2 and at Si:HfO 2 Heterojunctions. Chunguang Tang ( 唐 春光 ) (Bachelor Eng.: Univ. Sci. Tech. Beijing) (Master. Sci.: NUS) Chemical, Materials & Biomolecular Engineering Institute of Materials Science

barb
Download Presentation

First Principles Studies of Defects in HfO 2 and at Si:HfO 2 Heterojunctions

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Ph.D. Dissertation Proposal First Principles Studies of Defects in HfO2 and at Si:HfO2 Heterojunctions Chunguang Tang(唐春光) (Bachelor Eng.: Univ. Sci. Tech. Beijing) (Master. Sci.: NUS) Chemical, Materials & Biomolecular Engineering Institute of Materials Science University of Connecticut Principal Advisor: Prof. R. Ramprasad Associate Advisor: Prof. L. Shaw Associate Advisor: Prof. P. S. Alpay

  2. First transistor radio: 4 transistors. Quad core processor contains 820 million transistors # of transistors Introduction: device miniaturization

  3. K ~ 4 K ~ 30 high k (dielectric constant) transistor

  4. High k issues • Formation of interface phases (SiOx, silicate, Hf-Si) • Effects of oxygen point defects* • Point defects migration may contribute to interfacial phase formation • High oxygen pressure favors silica & low pressure favors Hf silicide Wong et al, Microelectronic Eng. (2006) Locquet et al, JAP (2006); Stemmer et al • * D. Y. Cho et al, APL, 86, 041913 (2005); X. Y. Qiu et al, APL, 88, 072906 (2006); S. Stemmer, JBSTB, 22, 791 (2004)

  5. High k issues • High leakage currents and low dielectric constant due to crystallization • As-deposited: amorphous (preferred) • Crystallizes at 400~500 °C • Doped HfO2 with alloying elements. • Si, Y, La, F, N • Increase crystallization temperatures • Stabilize higher k phases amorphous cubic tetragonal monoclinic k ~ 30 k ~ 29 k ~ 70 k ~ 16

  6. Proposed research plan • Undoped HfO2 • The formation and migration of O vacancies, O interstitials and Hf vacancies. • Their contribution to the interfacial phases. • Doped HfO2 • Dopants: Si, Y, La, F, N. • Effects of dopants on relative stabilities of various phases of HfO2. • Effects of dopants on O defect chemistry.

  7. 0 1 2 3 4 Computational Methods • Density Functional Theory (DFT) • Many nuclei-many electron problem  one electron problem • Supercell approach • Phase and structure information, defect energies • Computational times • Defect formation energies  16 days in one AMD 2.0 GHz processor (Supercell of ~230 atoms). • Migration energy calculation  45 days. E Emigr. Reaction path

  8. Completed Research • Bulk HfO2 results Table I: relative energies (eV) and lattice constants (Å) of bulk HfO2 * J. Wang, H. P. Li, and R. Stivens, J. Mater. Sci. 27, 5397 (1992) ** D. M. Adams, S. Leonard, D. R. Russel, and R. J. Cemik, J. Phys. Chem. Solids52, 1181 (1991) *** J. Adam and M. D. Rodgers, Acta Crystallogr. 12, 951 (1959)

  9. Eform Defects in bulk HfO2 + 1 O atom Eform = Evac+ (EO2)/2 - Eperf Table II: Formation energies (eV) of point defects in bulk HfO2

  10. O interstitial Formation and Migration* Si HfO2 Interfacial segregation: Thermodynamic driving force (decreasing Eform as interface is approached) Hf O Kinetic driving force, and O penetration into Si (decreasing Emigr as interface is approached) Experimental Emigr. of O interstitial in bulk Si: 2.44 eV** (2.26 eV, calculated) O interstitials could lead to the formation of SiOx * C. Tang & R. Ramprasad, Phys. Rev. B75, 241302 (2007); ** J. C. Mikkelsen, Appl. Phys. Lett. 40, 336 (1981).

  11. O Vacancy Formation and Migration* Si HfO2 Hf O Interfacial segregation: Aided by thermodynamic & kinetic driving forces O vacancies could lead to the formation of Hf silicide * C. Tang, B. Tuttle & R. Ramprasad, Phys. Rev. B76, 073306 (2007)

  12. Hf Vacancy Formation and Migration* Hf • Hf vacancies prefer the interface • Si strongly prefers to penetrate into HfO2 O Hf vacancies could lead to the formation of Hf silicate Si penetration * C. Tang & R. Ramprasad, Appl. Phys. Lett., 92, 152911 (2008)

  13. Abrupt Interface “SiOx” Interface “Hf-Si” Interface Accumulation of O Point Defects* Thermodynamics favors accumulation of point defects at interface, and consequently, the creation of Hf silicide or SiOx * C. Tang & R. Ramprasad, Appl. Phys. Lett., 92, 182908 (2008)

  14. Si doped HfO2 (SDH) C-SDH (1-x) HfO2 + xSiO2 + Ef = Hf1-xSixO2 t-SDH m-SDH • If Si > 12%  t-HfO2 most stable • The local chemistry of Si prefers SiO2 configuration m-SDH t-SDH c-SDH

  15. Y doped HfO2 (YDH) (1-x) HfO2+(x/2)Y2O3+Ef=Hf1-xYxO2-x/2 m-YDH Charge neutrality  2 Y atoms & 1 O vacancy c-YDH t-YDH • If Y > 12%, t-HfO2 and c-HfO2 more stable. • Similar stabilization phenomenon in c-YSZ for fuel cell application. • Instead of Y, positively charged O vacancies are identified as the major stabilizing factor.

  16. Remaining research • Undoped HfO2 • Amorphous HfO2 and Si heterojunction; • Lower leakage current • High dielectric constant • Various charged states of O defects (VO0, VO+1, VO+2, iO0, iO-1, iO-2); • Formation energies

  17. Remaining research • Doped HfO2 • Effects of dopants on HfO2 stabilities (La, F, N); • Formation and migration energies of O defects close to and far away the dopants. • How they influence the behaviors of defects in HfO2 and Si heterojunctions

  18. Publication list • C. Tangand R. Ramprasad, "Oxygen defect accumulation at Si:HfO2 interfaces" , Appl. Phys. Lett., 92, 182908 (2008). • C. Tangand R. Ramprasad, "A study of Hf vacancies at Si:HfO2 heterojunctions" , Appl. Phys. Lett., 92, 152911 (2008). • C. Tangand R. Ramprasad, "Oxygen pressure dependence of HfO2 stoichiometry: An ab initio investigation" , Appl. Phys. Lett., 91, 022904 (2007). • C. Tang, B. R. Tuttle and R. Ramprasad, "Diffusion of O vacancies near Si:HfO2 interfaces: An ab initio investigation", Phys. Rev. B, 76, 073306 (2007). • C. Tangand R. Ramprasad, "Ab initio study of O interstitial diffusion near Si:HfO2 interfaces", Phys. Rev. B, 75, 241302(R) (2007). • B. R. Tuttle, C. Tangand R. Ramprasad, "First-principles study of the valence band offset between silicon and hafnia", Phys. Rev. B, 75, 235324 (2007). • R. Ramprasad and C. Tang, "Circuit elements at optical frequencies from first principles: a synthesis of electronic structure and circuit theories", J. Appl. Phys. 100, 034305 (2006). • Tang CG, Li Y, Zeng KY, Mater. Lett., 59, 3325, (2005). • Tang CG, Li Y, Zeng KY, Mater. Sci. Eng. A, 384, 215, (2004). • Li Y, Cui LJ, Cao GH, Ma QZ, Tang CG, Wang Y, Wei L, Zhang YZ, Zhao ZX, Baggio-Saitovitch E, Physica C, 314, 55, (1999). • Li Y, Wang YB, Tang CG, Ma QZ, Cao GH, SCI CHINA SER A, 40, 978, (1997). • Li Y, Tang CG, Ma QZ, Wang YB, Cao GH, Wei T, Wang WH, Zhang TB, Physica C, 282, 2093, (1997).

  19. Acknowledgment Committee members: Profs. Rampi Ramprasad, Leon L. Shaw and Pamir S. Alpay Profs. Puxian Gao and George A. Rossetti Group students: Ning, Luke, Tom, Ghanshyam and Hong Computational resources: IMS computation clusters; SGI supercomputer in SoE Funding: NSF & ACS-PRF

  20. Backup slides

  21. (P, T) dependence of O defects • DFT computations of O vacancy & interstitial formation energies as a function of defect concentration … combined with … thermodynamic model yields (P,T) dependence of stoichiometry Jiang et al Appl. Phys. Lett.87, 141917 (2005) Pick up T, find P to make formation energy 0, corresponding to equilibrium condition. C. Tang & R. Ramprasad Appl. Phys. Lett.91, 022904 (2007)

  22. T = 1200 K (P, T) dependence of interface morphology • Pressure changes could stabilize silicide or SiOx • Increase in T makes abrupt Si:HfO2 interface less stable T = 400 K “Hf-Si” Interface Abrupt Interface “SiOx” Interface

  23. Si doped HfO2 (SDH) (1-x) HfO2+xSiO2+Ef=Hf1-xSixO2 a1 a2 The local chemistry of Si prefers SiO2 configuration t-SDH m-SDH c-SDH

  24. Y doped HfO2

  25. Density Functional Theory Initial guess of wave function & electron density Set up Hamiltonian Energy, forces on atoms New electron density DE < Ebreak no yes end

  26. Accuracy of DFT • Structures (bond lengths, bond angles, lattice constants) predicted to within 1 % of experiments • Elastic properties (bulk & shear modulus, etc.) accurate to within 5% of experiments • Bond energies, cohesive energies within 10% of experiments • Relative energies (energy difference between FCC & BCC, for example) are accurate to within 2% • Band gaps are off by about 50% !!!

  27. Si:HfO2 heterostructure models Tetragonal HfO2-based Monoclinic HfO2 -based

  28. Why HfO2 Source: R. M. Wallace and G. D. Wilk, Crit. Rev. Solid State Mater. Sci. 28, 231

  29. Influence of defects on performance • Charges are trapped in defects, shifting threshold voltage and making operation unstable. • Trapped charges scatter carriers in the channel  lower carrier mobility • Cause unreliability (oxide breakdown)

  30. Effect of F • (APL 90, 112911) • Remove midgap states from Hf dangling bonds at HfO2/SiO2 interface; • Excessive F increase leakage current. • (APL 89, 142914) • Defect passivation

More Related