200 likes | 216 Views
This update discusses the objectives, progress, and key engineering issues of Internet2, including the introduction of quality of service, improving multicast support, and introducing IPv6. It also highlights the importance of advanced applications and the role of universities in research and education missions.
E N D
Internet2 Engineering Update • Guy AlmesInternet2 Chief Engineer<almes@internet2.edu> • Educom MeetingMinneapolis — 30 October 1997
Outline of the Talk • Internet2 Engineering Objectives • Working Groups • GigaPoP Progress • Four Key Engineering Issues • Large Delay-Bandwidth Products • Introducing Quality of Service • Improving Multicast Support • Introducing IPv6
Internet2 Engineering Objectives • Enable Advanced Applications • Strengthen the Universities in their Research / Education Missions • Pioneer Specific Technical Advances • Establish GigaPoPs as Effective Service Points
Applications and Engineering Applications Motivate Enables Engineering
Comments on Apps and Plumbing • Advanced applications transform high-speed plumbing into value • Advanced plumbing enables advanced applications • Profligate use of bandwidth, per se, does not make an application ‘advanced’ • Megalomaniac plumbing, per se, does not make the plumbing ‘advanced’
Comments on the UniversityResearch/Education Mission • Due to their teaching mission, universities scatter researchers • University faculty and students therefore have a disproportionate need to be able to collaborate at a distance
u u u u Sketch of Internet2 Architecture Interconnect: connects all the gigaPoPs to each other GigaPoPs: connect universities to the Interconnect and to other services Universities: upgrade their LANs to more than 500 Mb/s gigaPoP Interconnect u gigaPoP u gigaPoP gigaPoP u u u u gigaPoP
1997 High-speed uncongested best-efforts IPv4 T3 and OC3 will be typical; some OC12 About 15 gigaPoPs; about 45 universities Introduction of Measurements 1998 Introduce Quality of Service Improve Multicast Support Introduce IPv6 1997 vs 1998 Sets of Aspirations
to address project-wide technical issues minimal constraint on natural diversity of gigaPoP technical choices complementary to groups such as the IETF Working Groups
IPv6: Dale Finkelson of Univ Nebraska Measurement: David Wasley of UCOP Multicast: Dave Meyer of Univ Oregon Network Mgmt: Mark Johnson of MCNC Quality of Service: Ben Teitelbaum (staff) Routing: Steve Corbato of Univ Washington Security: Peter Berger of Carnegie Mellon Topology: Paul Love (staff) Initial Working Groups
Four Key Engineering Issues • Large Delay-Bandwidth Products • Introducing Quality of Service • Improving Multicast Support • Introducing IPv6
Large Delay-Bandwidth Products • As the product of delay and bandwidth grows: • The number of unacknowledged packets grows • It becomes more difficult to sustain a steady stream of data from end to end • Several consequences: • Need for direct physical paths • Tradeoff between buffering and variation in delay
Introducing Quality of Service • Technical: • End-to-end vs Intermediate • Host vs Proxies • Bandwidth, Delay parameters • Administrative: • Admission Control • Measurements • Authentication
Quality of Service Sketch B A • Does the QoS approach support the applications? • Are there implementations that work? Only one? • If cloud ‘A’ and cloud ‘B’ both implement QoS, does the combined A+B catenation implement QoS?
Improving Multicast Support • Current MBone community is small • Many advanced applications are naturally multicast • one to many (e.g., distance education) • few to few (e.g., graduate seminars or conferences) • Scaling is hard: • Optimize for transmission lines? • Optimize for packet forwarding?
IPv6 Issues • Initially this will appear to be an end in itself • We hope/expect that it will become an aid to solving other problems • Compact Routing Tables • Some help for QoS, IP options • Products will be available beginning 1997