1 / 23

Explore Parallelograms: Concepts, Proofs & Applications

Understand parallelogram concepts, proofs using coordinate geometry, and applications in mechanics. Learn how to identify parallelograms and prove their properties with algebra and geometry.

Download Presentation

Explore Parallelograms: Concepts, Proofs & Applications

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Concept 1

  2. Concept 2

  3. Identify Parallelograms Determine whether the quadrilateral is a parallelogram. Justify your answer. Answer: Each pair of opposite sides has the same measure. Therefore, they are congruent.If both pairs of opposite sides of a quadrilateral are congruent, the quadrilateral is a parallelogram. Example 1

  4. A B C D Which method would prove the quadrilateral is a parallelogram? A. Both pairs of opp. sides ||. B. Both pairs of opp. sides . C. Both pairs of opp. ’s . D. One pair of opp. sides both || and . Example 1

  5. Use Parallelograms to Prove Relationships MECHANICS Scissor lifts, like the platform lift shown below, are commonly applied to tools intended to lift heavy items. In the diagram, A  C and B  D. Explain why the consecutive angles will always be supplementary, regardless of the height of the platform. Example 2

  6. Use Parallelograms to Prove Relationships Answer: Since both pairs of opposite angles of quadrilateral ABCD are congruent, ABCD is a parallelogram by Theorem 6.10. Theorem 6.5 states that consecutive angles of parallelograms are supplementary. Therefore, mA + mB = 180 and mC + mD = 180. By substitution, mA + mD = 180 and mC + mB = 180. Example 2

  7. A B C D The diagram shows a car jack used to raise a car from the ground. In the diagram, AD BC and AB  DC. Based on this information, which statement will be true, regardless of the height of the car jack. A. A  B B. A  C C.AB  BC D.mA + mC = 180 Example 2

  8. Use Parallelograms and Algebra to Find Values Find x and y so that the quadrilateral is a parallelogram. Opposite sides of a parallelogram are congruent. Example 3

  9. Use Parallelograms and Algebra to Find Values AB = DC Substitution Distributive Property Subtract 3x from each side. Add 1 to each side. Example 3

  10. Use Parallelograms and Algebra to Find Values Substitution Distributive Property Subtract 3y from each side. Add 2 to each side. Answer: So, when x = 7 and y = 5, quadrilateral ABCD is a parallelogram. Example 3

  11. A B C D Find m so that the quadrilateral is a parallelogram. A.m = 2 B.m = 3 C.m = 6 D.m = 8 Example 3

  12. Concept 3

  13. Parallelograms and Coordinate Geometry COORDINATE GEOMETRYGraph quadrilateral QRST with vertices Q(–1, 3), R(3, 1), S(2, –3), and T(–2, –1). Determine whether the quadrilateral is a parallelogram. Justify your answer by using the Slope Formula. If the opposite sides of a quadrilateral are parallel, then it is a parallelogram. Example 4

  14. Answer: Since opposite sides have the same slope, QR║ST and RS║TQ. Therefore, QRST is a parallelogram by definition. Parallelograms and Coordinate Geometry Example 4

  15. A B Graph quadrilateral EFGH with vertices E(–2, 2), F(2, 0), G(1, –5), and H(–3, –2). Determine whether the quadrilateral is a parallelogram. A. yes B. no Example 4

  16. Step 1 Position quadrilateral ABCD on the coordinate plane such that AB DC and AD  BC. ● Let AB have a length of a units. Then B has coordinates (a, 0). Parallelograms and Coordinate Proofs Write a coordinate proof for the following statement. If both pairs of opposite sides of a quadrilateral are congruent, then the quadrilateral is a parallelogram. ● Begin by placing the vertex A at the origin. Example 5

  17. ● Since AD BC position the endpoints of DC so that they have the same y-coordinate, c. Parallelograms and Coordinate Proofs ● So that the distance from D to C is also a units, let the x-coordinate of D be b and of C be b + a. Example 5

  18. Given: quadrilateral ABCD, AB DC, AD  BC Parallelograms and Coordinate Proofs Step 2 Use your figure to write a proof. Prove:ABCD is a parallelogram. Coordinate Proof: By definition a quadrilateral is a parallelogram if opposite sides are parallel. Use the Slope Formula. Example 5

  19. The slope of AB is 0. The slope of CD is 0. Since AB and CD have the same slope and AD and BC have the same slope, AD║BC and AB║CD. Parallelograms and Coordinate Proofs Answer: So, quadrilateral ABCD is a parallelogram because opposite sides are parallel. Example 5

  20. A B A.AB = a units and DC = a units; slope of AB = 0 and slope of DC = 0 B.AD = c units and BC = c units; slope of and slope of Which of the following can be used to prove the statement below? If a quadrilateral is a parallelogram, then one pair of opposite sides is both parallel and congruent. Example 5

More Related