200 likes | 270 Views
Chapter 5.1. Bisectors of Triangles. Concept. Use the Perpendicular Bisector Theorems. A. Find BC . BC = AC Perpendicular Bisector Theorem BC = 8.5 Substitution. Answer: 8.5. Use the Perpendicular Bisector Theorems. B. Find XY . Answer: 6.
E N D
Chapter 5.1 Bisectors of Triangles
Use the Perpendicular Bisector Theorems A. Find BC. BC = AC Perpendicular Bisector Theorem BC = 8.5 Substitution Answer: 8.5
Use the Perpendicular Bisector Theorems B. Find XY. Answer: 6
Use the Perpendicular Bisector Theorems C. Find PQ. Answer: 7
A. Find NO. A. 4.6 B. 9.2 C. 18.4 D. 36.8
B. Find TU. A. 2 B. 4 C. 8 D. 16
C. Find EH. A. 8 B. 12 C. 16 D. 20
Use the Angle Bisector Theorems A. Find DB. DB = DC Angle Bisector Theorem DB = 5 Substitution Answer:DB = 5
Use the Angle Bisector Theorems B. Find mWYZ.
Use the Angle Bisector Theorems C. Find QS. Answer: So, QS = 4(3) – 1 or 11.
A. Find the measure of SR. A. 22 B. 5.5 C. 11 D. 2.25
B. Find the measure of HFI. A. 28 B. 30 C. 15 D. 30
C. Find the measure of UV. A. 7 B. 14 C. 19 D. 25
Use the Incenter Theorem A. Find ST if S is the incenter of ΔMNP. By the Incenter Theorem, since S is equidistant from the sides of ΔMNP,ST = SU. Find ST by using the Pythagorean Theorem.
Use the Incenter Theorem B. Find mSPU if S is the incenter of ΔMNP.
A. Find the measure of GF if D is the incenter of ΔACF. A. 12 B. 144 C. 8 D. 65