1 / 35

Magnetic and Electric Fields for KEK-RCNP EDM Experiment

This study focuses on the measurement of Electric Dipole Moment (EDM) using magnetic and electric fields in the KEK-RCNP experiment. It discusses the principle of the EDM measurement, systematic errors, field simulations, and experimental setups.

barryriley
Download Presentation

Magnetic and Electric Fields for KEK-RCNP EDM Experiment

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Magnetic/Electric Fields for KEK-RCNP EDM Experiment K. Matsuta(Osaka) , Y. Masuda(KEK), Y. Watanabe(KEK), S.C. Jeong(KEK), K. Hatanaka(RCNP), R. Matsumiya (RCNP), S. Kawasaki(KEK), M. Mihara(Osaka), A. Miller(TRIUMF), C. Bidinosti(Winnipeg), Y. Shin(TRIUMF)and other KEK-RCNP members UCN source @RCNP ρ = 26 UCN/cm3 @ EC = 90 neV

  2. δdsta = h/{2PnEtc√N} nEDM Pncos(ω-ωo)tc RF frequency ω Principle of EDM measurement n spin s 1st RF pulse γH1t = π/2 ωo: 2μnHo ± 2dnE tc: precession time Ho 1 μT E 10 kV/cm (ω-ωo)tc UCN bottle E reversal for extraction of dn Pn : UCN polarization N : number of UCN

  3. δdsta = h/{2PnEtc√N} nEDM Pncos(ω-ωo)tc RF frequency ω Principle of EDM measurement n spin s 1st RF pulse γH1t = π/2 ωo: 2μnHo ± 2dnE tc: precession time Ho 1 μT E 10 kV/cm (ω-ωo)tc UCN bottle E reversal for extraction of dn Pn : UCN polarization N : number of UCN

  4. magnetic material Non-cylindrically symmetric field ∂B/∂z = 1 nT/m Magnetic shielding Systematic errors at ILL ×10-27 e.cm 1 Door cavity dipole -5.6 ±2.0 2 Other dipole fields 0.0 ±6.0 3 Quadrupole difference -1.3 ±2.0 4 v×E translational 0.0 ±0.03 5 v×E rotational 0.0 ±1.0 6 Second-order v×E 0.0 ±0.02 7 Hg light shift (geo phase) 3.5 ±0.8 8 Hg light shift (direct) 0.0 ±0.2 9 Uncompensated B drift 0.0 ±2.4 10 Hg atom EDM -0.4 ±0.3 11 Electric forces 0.0 ±0.4 12 Leakage currents 0.0 ±0.1 13 AC fields 0.0 ±0.01 Total -3.8 ±7.2 Sensitive magnetometer removes magnetized material. Spherical coil removes quadrupole component. reduced ∂B/∂z = 0.1 nT/m with small cell superparamagnetic material/ superconductor

  5. Ramsey resonance for EDM Ramsey resonance UCN filling UCN detection 170 neV max VF + μH 210 neV ± 120 neV 90 neV 330 neV

  6. Spherical coil π/2 RF coil Ramsey resonance with present UCN source EDM cell Door valve UCN valve Spin flipper Polarizer/analyzer Rotary valve UCN detector

  7. π/2 RF coil EDM cell UCN storage timein the EDM Cell Silica + DLC coating τ = 119.5 ± 1.4 s Silica + CuBe Silica + CuBe Untreated Degreasing τ = 24.7 ± 0.9 s τ = 75.8 ± 2.3 s

  8. tc= 100ms t t two coherent RF pulses Ramsey resonance 2009 π/2 π/2 Effect of Pncos(ω-ωo)tc visibility α = (Nmax – Nmin)/(Nmax + Nmin) = 0.9 -π (ω-ωo)tc = -5π π 5π -3π 3π -4π 4π 0 -2π 2π 200 mG

  9. Ramsey resonance 2010 tc= 30 s t t two coherent RF pulses 1/30 Hz 30 s Ramsey fringe tc = 30 s , α= 0.33 H0 = 20 mG resonance freq.

  10. Visibility as a function of tc 1/T2=(ω0 δB/B0)2 τ Where τ=λ/vucn S.Flipp et al. / NIM A 598 (2009) 571 T2 〜 50 s

  11. δBz=4nT δBz/B0 〜 0.2% dBz/dz =25 [nT/m] EDM cell Bz field distribution ω0(δB/B0) =2π (60Hz)×(0.2%) = 0.75 1/s τ = λ/vucn= (4V/S)/ vucn= 0.04 sec Consistent with The experimental T2 1/T2=(ω0 δB/B0)2 τ = 1/44 1/s

  12. Trim coil adjusted

  13. Z Y Observation 3D field simulation(OPERA-3d) X Geomagnetic field Simulation

  14. 消磁回路図 6回巻き 1回巻き 100Ω 1μF 0.1Ω 消磁のヒステリシスループの軌跡 H(A/m) B(T)

  15. 消磁前後で比較(Br)

  16. 消磁前後で比較(Br)

  17. Z X 磁気シールドの下の穴の部分に煙突があるとき、ないときの比較 Geomagnetic field Only holes Z 80 60 40 X 20 0 Z(cm) Z(cm) -20 -40 -60 Chimney -80

  18. Multi-layer suppression Field simulation(OPERA-3d) Z Y X Geomagnetic field

  19. Z 2D Magnetic field distribution for 2msize model Y 1nT Compensationコイル X

  20. Z=0 Y=0 2m size coil 1nT 4m size coil

  21. Z Y 1/5 scale model of Compensation coil X 3axes – flux gate sensor

  22. Experimental setup for EDMat New UCN source Increase UCN transport efficiency 25

  23. UCN

  24. Our data 105 Extrapolation ? 10kV/cm Phys. Lett. A 376 (2012) 1347 IEEE TRANSACTIONSON POWER APPARATUS AND SYSTEMS, VOL. PAS-88, 1969

  25. Silica HV Cell Electric field simulation for HV cell strong field have to avoid discharge homogeneity ~ 10-2 should be homogeneous to avoid vxE effect for rotational flow

  26. E v EDM Cell Er vxEr 1 Er df = μ V c2 E Er x x (Degree of rotational flow) = (6 x 10-22 ecm) E

  27. Summary Present dB/dz 〜 25 nT/m or δBz = 4nT tc = 30 s Ramsey ts = 120 s T1 〜 1000 s T2 =50 s B field Improvement 4 layer shield Demagnetization Compensation coil 1 nT/m  0.1nT/m With Fluxgate and K magnetometer Structure Designing for small leakage and good homogeneity And good breakdown character with Xe gas E filed 2013 Test of the New UCN source 2013〜2014 High voltage application test EDM SC polarizer Xe co-magnetometer 2015? TRIUMF

More Related