1 / 62

IFIC, 6 February 2007 Julien Lesgourgues (LAPTH , Annecy )

current status of cosmological inflation. IFIC, 6 February 2007 Julien Lesgourgues (LAPTH , Annecy ). 1) « historical arguments » - flatness problem - horizon problem - monopoles & topological defects basic model - slow rolling scalar field - primordial fluctuations

bart
Download Presentation

IFIC, 6 February 2007 Julien Lesgourgues (LAPTH , Annecy )

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. current status of cosmological inflation IFIC, 6 February 2007 Julien Lesgourgues (LAPTH, Annecy)

  2. 1) « historical arguments » - flatness problem - horizon problem - monopoles & topological defects • basic model - slow rolling scalar field - primordial fluctuations 3) agreement between CMB maps and inflation - coherence - scale invariance - gaussianity - adiabaticity 4) current constraints on inflation, prospects…

  3. 1) « historical arguments » - flatness problem - horizon problem - monopoles & topological defects • basic model - slow rolling scalar field - primordial fluctuations 3) agreement between CMB maps and inflation - coherence - scale invariance - gaussianity - adiabaticity 4) current constraints on inflation, prospects… 1979-1982: A.Starobinsky A. Guth

  4. Definitions : -scale factor : a(t) ds2 = dt2 - a(t)2 dx2 c=1 -e-fold number : N = ln a e.g. “a stage lasts for DN=10 e-folds” a(t) increases by factor e10=22000 1) « historical arguments » : flatness problem

  5. matter (nr, r) spatial curvature decelerated expansion H 1) « historical arguments » : flatness problem Friedmann equation : or : a-2 a-3, a-4

  6. curvature ? 1) « historical arguments » : flatness problem ln r radiation matter dark energy ln a today

  7. curvature ? 1) « historical arguments » : flatness problem ln r Mp4 1062 radiation matter dark energy ln a today

  8. 1) « historical arguments » : flatness problem ln r TeV4 1032 radiation matter dark energy curvature ? ln a today

  9. 1) « historical arguments » : flatness problem Inflation = stage of accelerated expansion Friedmann Energy cons.ä(t) > 0  r + 3 p < 0  r an, -2 < n < 0

  10. 1) « historical arguments » : flatness problem ln r radiation inflation curvature matter dark energy ln a today

  11. 1) « historical arguments » : flatness problem What is the minimal duration of inflation ?

  12. DNinflation=DNpost-inflation 1) « historical arguments » : flatness problem ln r inflation r~cst radiation a-4 curvature a-2 ln a today

  13. 1) « historical arguments » : flatness problem Minimal duration of inflation : DNinflation DNpost-inflation

  14. 1) « historical arguments » : horizon problem t y x

  15. 1) « historical arguments » :horizon problem t y x photon decoupling last scattering surface (LSS) are all LSS points within causal contact ?

  16. Hubble radius at decoupling: ~1° ↓initial singularity 1) « historical arguments » : horizon problem t y x photon decoupling Last scattering surface (LSS)

  17. 1) « historical arguments » : horizon problem t y x x photon decoupling last scattering surface (LSS) inflation

  18. curvature ? • « historical arguments » : monopoles and other defects ln r phase transition defects radiation matter dark energy ln a today

  19. « historical arguments » : monopoles and other defects ln r phase transition radiation inflation matter curvature dark energy ln a today

  20. Basic model : a slow-rolling scalar field Inflation = stage of accelerated expansion Friedmann + e. c. : ä(t) > 0  r + 3 p < 0 nearly homogeneous slow-rolling scalar fields: r = ½ f‘2 + V(f) p = ½ f‘2- V(f) |dV/df | < V/mP , |d2V/df2|< V/mP2 V f

  21. Basic model : a slow-rolling scalar field Inflation = stage of accelerated expansion Friedmann + e. c. : ä(t) > 0  r + 3 p < 0 nearly homogeneous slow-rolling scalar field: r = ½ f‘2 + V(f) p = ½ f‘2- V(f) |dV/df | < V/mP , |d2V/df2|< V/mP2 V f

  22. end of inflation: field oscillates and decays in particles which finally thermalize • Basic model : a slow-rolling scalar field Inflation = stage of accelerated expansion Friedmann + e. c. : ä(t) > 0  r + 3 p < 0 nearly homogeneous slow-rolling scalar field: r = ½ f‘2 + V(f) p = ½ f‘2- V(f) |dV/df | < V/mP , |d2V/df2|< V/mP2 V f

  23. Basic model:primordial cosmological fluctuations fluctuations today

  24. Basic model:primordial cosmological fluctuations fluctuations at decoupling

  25. Basic model:primordial cosmological fluctuations origin of fluctuations ?

  26. Basic model:primordial cosmological fluctuations decelerated expansion : - causal horizon = Hubble radius ( RH = c/H ) - RH(t) grows faster than a(t) distance RH acausal primodial cosmological perturbations causal L time MATTER DOMINATION RADIATION DOMINATION

  27. Basic model:primordial cosmological fluctuations decelerated expansion : - causal horizon = Hubble radius ( RH = c/H ) - RH(t) grows faster than a(t) distance RH primodial cosmological perturbations no coherent fluctuations phase transition L time MATTER DOMINATION RADIATION DOMINATION

  28. Basic model:primordial cosmological fluctuations accelerated expansion : - causal horizon » Hubble radius - RH(t) grows more slowly than a(t) distance RH primodial cosmological perturbations L time MATTER DOMINATION INFLATION RADIATION DOMINATION

  29. Basic model:primordial cosmological fluctuations - quantum fluctuations of df and hmn grow tomacroscopic scales - normalization and evolution imposed by quantum mechanics 1 distance RH primodial cosmological perturbations 1 L time MATTER DOMINATION INFLATION RADIATION DOMINATION

  30. Basic model:primordial cosmological fluctuations • - Hubble crossing, Bogolioubov transformation • “squeezed state”→ classical stochastic fluctuations 2 distance RH primodial cosmological perturbations 2 1 L time MATTER DOMINATION INFLATION RADIATION DOMINATION

  31. Basic model:primordial cosmological fluctuations - perturbation amplitude frozen since - «primordial spectrum» of scalar and tensor perturbations 2 3 distance RH primodial cosmological perturbations 3 2 1 L time MATTER DOMINATION INFLATION RADIATION DOMINATION

  32. Basic model :primordial cosmological fluctuations • insensitive to microscopical evolution (reheating, phase transition) • primordial spectrum mediated to g, b, n, CDM 4 distance RH primodial cosmological perturbations 4 3 2 1 L time MATTER DOMINATION INFLATION RADIATION DOMINATION

  33. Basic model:primordial cosmological fluctuations • acoustic oscillations and decoupling • CMB anisotropies → primordial spectrum inherited from 5 3 distance RH primodial cosmological perturbations 4 5 3 2 1 L time MATTER DOMINATION INFLATION RADIATION DOMINATION

  34. Agreement between CMB maps and inflation

  35. Agreement between CMB maps and inflation • inflation predict that perturbations are: • coherent • nearly gaussian • adiabatic* • nearly scale invariant* • *for simplest inflationary models

  36. Agreement between CMB maps and inflation time coherence of inflationary fluctuations : distance RH primodial cosmological perturbations decoupling L time MATTER DOMINATION RADIATION DOMINATION INFLATION

  37. Agreement between CMB maps and inflation absence of coherence in the case of topological defects : distance RH primodial cosmological perturbations decoupling L time MATTER DOMINATION RADIATION DOMINATION INFLATION

  38. validated (existence of acoustic peaks) • Agreement between CMB maps and inflation • inflation predict that perturbations are: • coherent • nearly gaussian • adiabatic* • nearly scale invariant* • *for simplest inflationary models

  39. validated (existence of acoustic peaks) validated (statistical analysis of CMB maps) • Agreement between CMB maps and inflation • inflation predict that perturbations are: • coherent • nearly gaussian • adiabatic* • nearly scale invariant* • *for simplest inflationary models

  40. validated (existence of acoustic peaks) validated (statistical analysis of CMB maps) validated (peak scale) • Agreement between CMB maps and inflation • inflation predict that perturbations are: • coherent • nearly gaussian • adiabatic* • nearly scale invariant* • *for simplest inflationary models

  41. validated (existence of acoustic peaks) validated (statistical analysis of CMB maps) validated (peak scale) • Agreement between CMB maps and inflation • inflation predict that perturbations are: • coherent • nearly gaussian • adiabatic* • nearly scale invariant* • *for simplest inflationary models

  42. Agreement between CMB maps and inflation scale invariance : slow rolling scalar field : V f f* AS AT k k amplitude  V3/2/V’ tilt (1-nS)  (V’/V)2 , V’’/V + hider order corrections (tilt running, …) amplitude  V1/2 tilt nT  (V’/V)2 + higher order corrections (tilt running, …)

  43. validated (existence of acoustic peaks) validated (statistical analysis of CMB maps) validated (peak scale) validated (peak amplitudes) • Agreement between CMB maps and inflation • inflation predict that perturbations are: • coherent • nearly gaussian • adiabatic* • nearly scale invariant* • *for simplest inflationary models

  44. current constraints on inflation single field slow-roll inflation : V f f* AS AT k k amplitude  V3/2/V’ tilt (1-nS)  (V’/V)2 , V’’/V + next-order corrections (running of the tilt, …) amplitude  V1/2 tilt nT  (V’/V)2 + next-order corrections (running of the tilt, …)

  45. current constraints on inflation overall amplitude AS AT k k amplitude  V3/2/V’ tilt (1-nS)  (V’/V)2 , V’’/V + next-order corrections (running of the tilt, …) amplitude  V1/2 tilt nT  (V’/V)2 + next-order corrections (running of the tilt, …) = 0.5x10-5 mp3

  46. current constraints on inflation overall slope AS AT k k amplitude  V3/2/V’ = 0.5x10-5 mp3 tilt (1-nS)  2.25 (V’/V)2 - V’’/V = 0.5 mp-2 + next-order corrections (running of the tilt, …) amplitude  V1/2 tilt nT  (V’/V)2 + next-order corrections (running of the tilt, …)

  47. current constraints on inflation absence of tensors AS AT k k amplitude  V3/2/V’ = 0.5x10-5 mp3 tilt (1-nS)  2.25 (V’/V)2 - V’’/V = 0.5 mp-2 + next-order corrections (running of the tilt, …) amplitude  V1/2 < (3.7x1016 GeV)2 tilt nT  (V’/V)2 + next-order corrections (running of the tilt, …)

  48. current constraints on inflation • Energy scale of inflation still unknown !! • Self-consistency relation still not checked !! absence of tensors AS AT k k amplitude  V3/2/V’ = 0.5x10-5 mp3 tilt (1-nS)  2.25 (V’/V)2 - V’’/V = 0.5 mp-2 + next-order corrections (running of the tilt, …) amplitude  V1/2 < (3.7x1016 GeV)2 tilt nT  (V’/V)2 + next-order corrections (running of the tilt, …)

  49. current constraints on inflation • Energy scale of inflation still unknown !! • Self-consistency relation still not checked !! • future CMB experiments (B-polarization) : r ~ 10-2 (factor 50 pour V) • future space-based GW interferometers : r ~ 10-4 (BBO) (factor 5000 pour V) • measure r, nt : inflationary energy scale • + self-consistency r=-8nt • measure r: inflationary energy scale • no GW detected : inflation unconstrained new physics at 1016 GeV (extra-D ?) ordinary QFT (SUSY, PNGB…)

More Related